• Страница 1 из 2
  • 1
  • 2
  • »
Решение задач » Решебники онлайн » Решебники по физике онлайн » Решебник Волькенштейн В.С. онлайн (ГДЗ Волькенштейна по физике)
Решебник Волькенштейн В.С. онлайн
Решебник Волькенштейн В.С. по физике

1.1 Первую половину времени своего движения автомобиль двигался со скоростью v1 80 км/ч, а вторую половину времени со скоростью v2 40 км/ч. Какова средняя скорость движения автомобиля
СМОТРЕТЬ РЕШЕНИЕ

1.2 Первую половину своего пути автомобиль двигался со скоростью v1 80 км/ч, а вторую половину пути со скоростью v2 40 км/ч. Какова средняя скорость движения автомобиля
СМОТРЕТЬ РЕШЕНИЕ

1.3 Пароход идет по реке от пункта А до пункта В со скоростью v1 = 10 км/ч, а обратно со скоростью v2 = 16 км/ч. Найти среднюю скорость v парохода и скорость и течения реки
СМОТРЕТЬ РЕШЕНИЕ

1.4 Найти скорость v относительно берега реки лодки, идущей по течению; лодки, идущей против течения; лодки, идущей под углом 90 к течению. Скорость течения реки u = 1 м/с, скорость лодки относительно воды v0 = 2 м/с.
СМОТРЕТЬ РЕШЕНИЕ

1.5 Самолет летит относительно воздуха со скоростью V0 = 800 км/ч. Ветер дует с запада на восток со скоростью V = 15 м/с. С какой скоростью v самолет будет двигаться относительно земли и под каким углом α к меридиану надо держать курс, чтобы перемещение было на юг; на север; на запад; на восток
СМОТРЕТЬ РЕШЕНИЕ

1.6 Самолет летит от пункта А до пункта B, расположенного на расстоянии l = 300 км к востоку. Найти продолжительность t полета, если ветра нет; ветер дует с юга на север; с запада на восток. Скорость ветра 20 м/с, скорость самолета относительно воздуха v0 = 600 км/ч
СМОТРЕТЬ РЕШЕНИЕ

1.7 Лодка движется перпендикулярно к берегу со скоростью v = 7,2 км/ч. Течение относит ее на расстояние 150 м вниз по реке. Найти скорость u течения реки и время t, затраченное на переправу через реку. Ширина реки L = 0,5 км.
СМОТРЕТЬ РЕШЕНИЕ

1.8 Тело, брошенное вертикально вверх, вернулось на землю через время t = 3 c. Какова была начальная скорость v0 тела и на какую высоту h оно поднялось
СМОТРЕТЬ РЕШЕНИЕ

1.9 Камень бросили вертикально вверх на высоту h0 10 м. Через какое время t он упадет на землю? На какую высоту h поднимется камень, если начальную скорость камня увеличить вдвое
СМОТРЕТЬ РЕШЕНИЕ

1.10 С аэростата, находящегося на высоте h 300 м, упал камень. Через какое время t камень достигнет земли, если аэростат поднимается со скоростью v = 5 м/с; опускается со скоростью v = 5 м/с; неподвижен
СМОТРЕТЬ РЕШЕНИЕ

1.11 Тело брошено вертикально вверх с начальной скоростью v0 9,8 м/с. Построить график зависимости высоты h и скорости v от времени t для интервала 0 ≤ t ≤ 2с через 0,2 c.
СМОТРЕТЬ РЕШЕНИЕ

1.12 Тело падает с высоты h 19,6 м с начальной скоростью v0 = 0. Какой путь пройдет тело за первую и последнюю 0,1 с своего движения
СМОТРЕТЬ РЕШЕНИЕ

1.13 Тело падает с высоты h 19,6м с начальной скоростью v0 = 0. За какое время тело пройдет первый и последний 1 м своего пути
СМОТРЕТЬ РЕШЕНИЕ

1.14 Свободно падающее тело в последнюю секунду движения проходит половину всего пути. С какой высоты h падает тело и каково время t его падения
СМОТРЕТЬ РЕШЕНИЕ

1.15 Тело 1 брошено вертикально вверх с начальной скоростью v0, тело 2 падает с высоты h без начальной скорости. Найти зависимость расстояния l между телами 1 и 2 от времени t, если известно, что тела начали двигаться одновременно.
СМОТРЕТЬ РЕШЕНИЕ

1.16 Расстояние между двумя станциями метрополитена l 1,5 км. Первую половину этого расстояния поезд проходит равноускоренно, вторую равнозамедленно с тем же по модулю ускорением. Максимальная скорость поезда v 50 км/ч. Найти ускорение a и время t движения поезда между станциями.
СМОТРЕТЬ РЕШЕНИЕ

1.17 Поезд движется со скоростью v0 36 км/ч. Если выключить ток, то поезд, двигаясь равнозамедленно, остановится через время t 20 c. Каково ускорение a поезда? На каком расстоянии s до остановки надо выключить ток
СМОТРЕТЬ РЕШЕНИЕ

1.18 Поезд, двигаясь равнозамедленно, в течение времени t 1 мин уменьшает свою скорость от v1 40 км/ч до v2 28км/ч. Найти ускорение a поезда и расстояние S, пройденное им за время торможения.
СМОТРЕТЬ РЕШЕНИЕ

1.19 Поезд движется равнозамедленно, имея начальную скорость v0 = 54 км/ч и ускорение a = -0,5 м/с2. Через какое время t и на каком расстоянии s от начала торможения поезд остановится
СМОТРЕТЬ РЕШЕНИЕ

1.20 Тело 1 движется равноускоренно, имея начальную скорость v10 и ускорение a1. Одновременно с телом 1 начинает двигаться равнозамедленно тело 2, имея начальную скорость v20 и ускорение a2. Через какое время t после начала движения оба тела будут иметь одинаковую скорость
СМОТРЕТЬ РЕШЕНИЕ

1.21 Тело 1 движется равноускоренно, имея начальную скорость v10 2 м/c И ускорение a. Через время t = 10 с после начала движения тела 1 из этой же точки начинает двигаться равноускоренно тело 2, имея начальную скорость v20 = 12 м/с и то же ускорение a. Найти ускорение a, при котором тело 2 сможет догнать тело 1.
СМОТРЕТЬ РЕШЕНИЕ

1.22 Зависимость пройденного телом пути s от времени t дается уравнением s = At - Bt2 +Сt3, где А = 2 м/с, В = 3 м/с2 и С = 4 м/с3. Найти зависимость скорости v и ускорения а от времени t; расстояние s, пройденное телом, скорость v и ускорение а тела через время t = 2 с после начала движения. Построить график зависимости пути s, скорости v и ускорения а от времени t для интервала 0≤ t ≤ 3 с через 0,5 c.
СМОТРЕТЬ РЕШЕНИЕ

1.23 Зависимость пройденного телом пути s oт времени t задается уравнением 5 = А - Bt + Ct^2, где a = 6 м, B = 3 м/с и С = 2 м/с2. Найти среднюю скорость v и среднее ускорение a тела для интервала времени 1 ≤ t ≤ 4с. Построить график зависимости пути s, скорости v и ускорения a от времени t для интервала 0 ≤ t ≤ 5с через 1 с.
СМОТРЕТЬ РЕШЕНИЕ

1.24 Зависимость пройденного телом пути s от времени t дается уравнением s = А + Bt + Ct^2, где А = 3 м, В = 2 м/с и С = 1 м/с2. Найти среднюю скорость v и среднее ускорение a тела за первую, вторую и третью секунды его движения.
СМОТРЕТЬ РЕШЕНИЕ

1.25 Зависимость пройденного телом пути s от времени t дается уравнением s = А + Bt + Ct^2 + Dt^3, где С = 0,14 м/с2 и D = 0,01 м/c3. Через какое время t тело будет иметь ускорение a = 1 м/с2? Найти среднее ускорение тела за этот промежуток времени.
СМОТРЕТЬ РЕШЕНИЕ

1.26 С башни высотой h = 25 м горизонтально брошен камень со скоростью vx = 15 м/с. Какое время t камень будет в движении? На каком расстоянии l от основания башни он упадет на землю? С какой скоростью v он упадет на землю? Какой угол составит траектория камня с горизонтом в точке его падения на землю
СМОТРЕТЬ РЕШЕНИЕ

1.27 Камень, брошенный горизонтально, упал на землю через время t = 0,5 с на расстоянии l = 5 м по горизонтали от места бросания. С какой высоты h брошен камень? С какой скоростью vx он брошен? С какой скоростью он упадет на землю? Какой угол составит траектория камня с горизонтом в точке его падения на землю
СМОТРЕТЬ РЕШЕНИЕ

1.28 Мяч, брошенный горизонтально, ударяется о стенку, находящуюся на расстоянии l = 5 м от места бросания. Высота места удара мяча о стенку на h = 1 м меньше высоты h, с которой брошен мяч. С какой скоростью vx брошен мяч? Под каким углом мяч подлетает к поверхности стенки
СМОТРЕТЬ РЕШЕНИЕ

1.29 Камень, брошенный горизонтально, через время t = 0,5 с после начала движения имел скорость v, в 1,5 раза большую скорости vx в момент бросания. С какой скоростью vx был брошен камень?
СМОТРЕТЬ РЕШЕНИЕ

1.30 Камень брошен горизонтально со скоростью vx = 15 м/с. Найти нормальное аn и тангенциальное аr ускорения камня через время t = 1 с после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

1.31 Камень брошен горизонтально со скоростью vx = 10 м/с. Найти радиус кривизны R траектории камня через время t = 3 с после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

1.32 Мяч брошен со скоростью V0=10 м/с под углом 40 к горизонту. На какую высоту h поднимется мяч? На каком расстоянии от места бросания он упадет на землю? Какое время t он будет в движении
СМОТРЕТЬ РЕШЕНИЕ

1.33 На спортивных состязаниях в Ленинграде спортсмен толкнул ядро на расстояние l1 = 16,2 м. На какое расстояние l2 полетит такое же ядро в Ташкенте при той же начальной скорости и при том же угле наклона ее к горизонту? Ускорение свободного падения в Ленинграде g1 = 9,819 м/с2, в Ташкенте g2 = 9,801 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

1.34 Тело брошено со скоростью v0 под углом к горизонту. Время полета t = 2,2 c. На какую высоту h поднимется тело
СМОТРЕТЬ РЕШЕНИЕ

1.35 Камень, брошенный со скоростью v0 = 12 м/с под углом α = 45 к горизонту, упал на землю на расстоянии l от места бросания. С какой высоты h надо бросить камень в горизонтальном направлении, чтобы при той же начальной скорости v0 он упал на то же место
СМОТРЕТЬ РЕШЕНИЕ

1.36 Тело брошено со скоростью v0 = 14,7 м/с под углом α = 30 к горизонту. Найти нормальное аn и тангенциальное аr ускорения тела через время t = 1,25 с после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

1.37 Тело брошено со скоростью v0 = 10 м/с под углом α = 45 к горизонту. Найти радиус кривизны R траектории тела через время t = 1 с после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

1.38 Тело брошено со скоростью v0 под углом α к горизонту. Найти скорость v0 и угол, если высота подъема тела h = 3 м и радиус кривизны траектории тела в верхней точке траектории R = 3 м.
СМОТРЕТЬ РЕШЕНИЕ

1.39 С башни высотой h0=25 м брошен камень со скоростью v0 = 15 м/с под углом α = 30 к горизонту. Какое время t камень будет в движении? На каком расстоянии l от основания башни он упадет на землю? С какой скоростью v он упадет на землю? Какой угол составит траектория камня с горизонтом в точке его падения на землю
СМОТРЕТЬ РЕШЕНИЕ

1.40 Мяч, брошенный со скоростью v0=10 м/с под углом α = 45 к горизонту, ударяется о стенку, находящуюся на расстоянии l = 3 м от места бросания. Когда происходит удар мяча о стенку при подъеме мяча или при его опускании? На какой высоте h мяч ударит о стенку считая от высоты, с которой брошен мяч? Найти скорость в момент удара.
СМОТРЕТЬ РЕШЕНИЕ

1.41 Найти угловую скоростью ω суточного вращения Земли; часовой стрелки на часах; минутной стрелки на часах; искусственного спутника Земли, движущегося по круговой орбите с периодом вращения Т = 88 мин. Какова линейная скорость v движения этого искусственного спутника, если известно, что его орбита расположена на расстоянии h = 200 км от поверхности Земли
СМОТРЕТЬ РЕШЕНИЕ

1.42 Найти линейную скорость v вращения точек земной поверхности на широте Ленинграда φ=60
СМОТРЕТЬ РЕШЕНИЕ

1.43 С какой линейной скоростью должен двигаться самолет на экваторе с востока на запад, чтобы пассажирам этого самолета Солнце казалось неподвижным
СМОТРЕТЬ РЕШЕНИЕ

1.44 Ось с двумя дисками, расположенными на расстоянии l = 0,5 м друг от друга, вращается с частотой n = 1600 об/мин. Пуля, летящая вдоль оси, пробивает оба диска; при этом отверстие от пули во втором диске смещено относительно отверстия в первом диске на угол 12. Найти скорость пули.
СМОТРЕТЬ РЕШЕНИЕ

1.45 Найти радиус R вращающегося колеса, если известно, что линейная скорость v1 точки, лежащей на ободе, в 2,5 раза больше линейной скорости v2 точки, лежащей на расстоянии r = 5 см ближе к оси колеса.
СМОТРЕТЬ РЕШЕНИЕ

1.46 Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через N = 10 об после начала вращения. Найти угловое ускорение колеса.
СМОТРЕТЬ РЕШЕНИЕ

1.47 Колесо, вращаясь равноускоренно, через время t = 1 мин после начала вращения приобретает частоту n = 720 об/мин. Найти угловое ускорение колеса и число оборотов N колеса за это время.
СМОТРЕТЬ РЕШЕНИЕ

1.48 Колесо, вращаясь равнозамедленно, за время t = 1 мин уменьшило свою частоту с n1 = 300 об/мин до n2 = 180 об/мин. Найти угловое ускорение колеса и число оборотов N колеса за это время.
СМОТРЕТЬ РЕШЕНИЕ

1.49 Вентилятор вращается с частотой n = 900 об/мин. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки N = 75 об. Какое время t прошло с момента выключения вентилятора до полной его остановки
СМОТРЕТЬ РЕШЕНИЕ

1.50 Вал вращается с частотой n = 180 об/мин. С некоторого момента вал начинает вращаться равнозамедленно с угловым ускорением 3 рад/с2. Через какое время t вал остановится? Найти число оборотов N вала до остановки.
СМОТРЕТЬ РЕШЕНИЕ

1.51 Точка движется по окружности радиусом R = 20 см с постоянным тангенциальным ускорением аr = 5 см/с2. Через какое время t после начала движения нормальное ускорение аn точки будет равно тангенциальному; вдвое больше тангенциального
СМОТРЕТЬ РЕШЕНИЕ

1.52 Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением ат. Найти тангенциальное ускорение аr точки, если известно, что к концу пятого оборота после начала движения линейная скорость точки v = 79,2 см/с.
СМОТРЕТЬ РЕШЕНИЕ

1.53 Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением аr. Найти нормальное ускорение аn точки через время t = 20 с после начала движения, если известно, что к концу пятого оборота после начала движения линейная скорость точки v = 10 см/с.
СМОТРЕТЬ РЕШЕНИЕ

1.54 В первом приближении можно считать, что электрон в атоме водорода движется по круговой орбите с линейной скоростью v. Найти угловую скорость ω вращения электрона вокруг ядра и его нормальное ускорение аn. Считать радиус орбиты r = 0,5·10^-10 м и линейную скорость электрона на этой орбите v = 2,2·10^6 м/с.
СМОТРЕТЬ РЕШЕНИЕ

1.55 Колесо радиусом R = 10 см вращается с угловым ускорением e = 3,14 рад/с2. Найти для точек на ободе колеса к концу первой секунды после начала движения угловую скорость; линейную скорость; тангенциальное ускорение; нормальное ускорение; полное ускорение; угол, составляемый вектором полного ускорения с радиусом колеса.
СМОТРЕТЬ РЕШЕНИЕ

1.56 Точка движется по окружности радиусом R = 2 см. Зависимость пути от времени дается уравнением s = Ct^3, где С = 0,1 см/с3. Найти нормальное аn и тангенциальное ат ускорения точки в момент, когда линейная скорость точки v = 0,3 м/с.
СМОТРЕТЬ РЕШЕНИЕ

1.57 Точка движется по окружности так, что зависимость пути от времени дается уравнением s = A - Bt + Ct^2, где В = 2 м/с и С = 1 м/с2. Найти линейную скорость v точки, ее тангенциальное ат нормальное аn и полное а ускорения через время t = 3с после начала движения, если известно, что при t = 2 с нормальное ускорение точки а n= 0,5 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

1.58 Найти угловое ускорение e колеса, если известно, что через время t = 2 с после начала движения вектор полного ускорения точки, лежащей на ободе, составляет угол 60 с вектором ее линейной скорости.
СМОТРЕТЬ РЕШЕНИЕ

1.59 Колесо вращается с угловым ускорением 2рад/с2. Через время t = 0,5 с после начала движения полное ускорение колеса a = 13,6 см/с2. Найти радиус R колеса.
СМОТРЕТЬ РЕШЕНИЕ

1.60 Колесо радиусом R = 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct^2, где В = 2 рад/с и С = 1 рад/с3. Для точек, лежащих на ободе колеса, найти через время t = 2 с после начала движения угловую скорость; линейную скорость; угловое ускорение; тангенциальное и нормальное ускорения.
СМОТРЕТЬ РЕШЕНИЕ

1.61 Колесо радиусом R = 5 см вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct2 + Dt3, где D = 1 рад/с3. Для точек, лежащих на ободе колеса, найти изменение тангенциального ускорения ат за единицу времени.
СМОТРЕТЬ РЕШЕНИЕ

1.62 Колесо радиусом R = 5см вращается так, что зависимость линейной скорости точек, лежащих на ободе колеса, от времени дается уравнением v = At + Bt2, где А = 3 см/с2 и В = 1 см/с3. Найти угол, составляемый вектором полного ускорения с радиусом колеса в моменты времени t, равные: 0, 1, 2, 3, 4 и 5 с после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

1.63 Колесо вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct2+Dt3, где B = 1 рад/с, С = 1 рад/с2 и D = 1 рад/с3. Найти радиус R колеса, если известно, что к концу второй секунды движения для точек, лежащих на ободе колеса, нормальное ускорение аn = 3,46·10^2 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

1.64 Во сколько раз нормальное ускорение аn точки, лежащей на ободе колеса, больше ее тангенциального ускорения ат для того момента, когда вектор полного ускорения точки составляет угол 30 с вектором ее линейной скорости
СМОТРЕТЬ РЕШЕНИЕ
2.1 Какой массы балласт надо сбросить с равномерно опускающегося аэростата, чтобы он начал равномерно подниматься с той же скоростью? Масса аэростата с балластом m = 1600 кг, подъемная сила аэростата F = 12 кН. Считать силу сопротивления Fсопр воздуха одной и той же при подъеме и спуске.
СМОТРЕТЬ РЕШЕНИЕ

2.2 К нити подвешен груз массой m = 1 кг. Найти силу натяжения нити T, если нить с грузом поднимать с ускорением a = 5 м/с2; опускать с тем же ускорением a = 5 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

2.3 Стальная проволока некоторого диаметра выдерживает силу натяжения Т = 4,4 кН. С каким наибольшим ускорением можно поднимать груз массой m = 400 кг, подвешенный на этой проволоке, чтобы она не разорвалась.
СМОТРЕТЬ РЕШЕНИЕ

2.4 Масса лифта с пассажирами m = 800 кг. С каким ускорением а и в каком направлении движется лифт, если известно, что сила натяжения троса, поддерживающего лифт Т = 12 кН; 6 кН
СМОТРЕТЬ РЕШЕНИЕ

2.5 К нити подвешена гиря. Если поднимать гирю с ускорением a1 = 2 м/с2, то сила натяжения нити T1 будет вдвое меньше той силы натяжения T2, при которой нить разорвется. С каким ускорением a1 надо поднимать гирю, чтобы нить разорвалась
СМОТРЕТЬ РЕШЕНИЕ

2.6 Автомобиль массой m = 1020 кг, двигаясь равнозамедленно, остановился через время t = 5 c, пройдя путь s = 25 м. Найти начальную скорость v0 автомобиля и силу торможения F.
СМОТРЕТЬ РЕШЕНИЕ

2.7 Поезд массой m = 500 т, двигаясь равнозамедленно, в течение времени t = 1 мин уменьшает свою скорость от v1 = 40 км/ч до v2 = 28 км/ч. Найти силу торможения
СМОТРЕТЬ РЕШЕНИЕ

2.8 Вагон массой m = 20 т движется с начальной скоростью v0 = 54 км/ч. Найти среднюю силу, действующую на вагон, если известно, что вагой останавливается в течение времени t = 1 мин 40 c; 10 c; 1 c
СМОТРЕТЬ РЕШЕНИЕ

2.9 Какую силу F надо приложить к вагону, стоящему на рельсах, чтобы вагон стал двигаться равноускоренно и за время t = 30 с прошел путь s = 11 м? Масса вагона 16 т. Во время движения на вагон действует сила трения Fтр, равная 0,05 действующей на него силы тяжести
СМОТРЕТЬ РЕШЕНИЕ

2.10 Поезд массой m = 500 т после прекращения тяги паровоза под действием силы трения Fтр = 98 кН останавливается через время t = 1 мин. С какой скоростью шел поезд
СМОТРЕТЬ РЕШЕНИЕ

2.11 Вагон массой m = 20 т движется равнозамедленно, имея начальную скорость v0 = 54 км/ч и ускорение a = -0,3 м/с2. Какая сила торможения F действует на вагон? Через какое время t вагон остановится? Какое расстояние s вагон пройдет до остановки
СМОТРЕТЬ РЕШЕНИЕ

2.12 Тело массой m = 0,5 кг движется прямолинейно, причем зависимость пройденного телом пути s от времени t дается уравнением s = A - Bt + Ct^2 - Dt^3, где С = 5 м/с2 и D = 1 м/с3. Найти силу, действующую на тело в конце первой секунды движения.
СМОТРЕТЬ РЕШЕНИЕ

2.13 Под действием силы F = 10 H тело движется прямолинейно так, что зависимость пройденного телом пути s от времени t дается уравнением s = A - Bt + Ct2, где С = 1 м/с2. Найти массу тела.
СМОТРЕТЬ РЕШЕНИЕ

2.14 Тело массой m = 0,5 кг движется так, что зависимость пройденного телом пути s от времени m дается уравнением s = A*sin(ωt), где A = 5 см и ω = π рад/с. Найти силу, действующую на тело через время 1/6 c после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

2.15 Молекула массой m = 4,65·10-26 кг, летящая по нормали к стенке сосуда со скоростью v = 600 м/с, ударяется о стенку и упруго отскакивает от нее без потери скорости. Найти импульс силы, полученный стенкой во время удара.
СМОТРЕТЬ РЕШЕНИЕ

2.16 Молекула массой m = 4,65·10-26 кг, летящая со скоростью v = 600 м/с, ударяется о стенку сосуда под углом α = 60 к нормали и упруго отскакивает от нее без потери скорости. Найти импульс силы Ft, полученный стенкой во время удара.
СМОТРЕТЬ РЕШЕНИЕ

2.17 Шарик массой m = 0,1 кг, падая с некоторой высоты, ударяется о наклонную плоскость и упруго отскакивает от нее без потери скорости. Угол наклона плоскости к горизонту 30. За время удара плоскость получает импульс силы FΔt = 1,73 Н·с. Какое время t пройдет от момента удара шарика о плоскость до момента, когда он будет находиться в наивысшей точке траектории
СМОТРЕТЬ РЕШЕНИЕ

2.18 Струя воды сечением S = 6 см2 ударяется о стенку под углом α = 60 к нормали и упруго отскакивает от нее без потери скорости. Найти силу, действующую на стенку, если известно, что скорость течения воды в струе 12 м/с.
СМОТРЕТЬ РЕШЕНИЕ

2.19 Трамвай, трогаясь с места, движется с ускорением a = 0,5 м/с2. Через время t = 12 с после начала движения мотор выключается и трамвай движется до остановки равнозамедленно. Коэффициент трения на всем пути k = 0,01. Найти наибольшую скорость v и время t движения трамвая. Каково его ускорение а при его равнозамедленном движении? Какое расстояние пройдет трамвай за время движения
СМОТРЕТЬ РЕШЕНИЕ

2.20 На автомобиль массой m = 1 т во время движения действует сила трения Fтр, равная 0,1 действующей на него силе тяжести mg. Какова должна быть сила тяги F, развиваемая мотором автомобиля, чтобы автомобиль двигался равномерно; с ускорением a = 2 м/с2
СМОТРЕТЬ РЕШЕНИЕ

2.21 Какой угол с горизонтом составляет поверхность бензина в баке автомобиля, движущегося горизонтально с ускорением a = 2,44 м/с2
СМОТРЕТЬ РЕШЕНИЕ

2.22 Шар на нити подвешен к потолку трамвайного вагона. Вагон тормозится, и его скорость за время t = 3 с равномерно уменьшается от v1 = 18 км/ч до v2 = 6 км/ч. На какой угол отклонится при этом нить с шаром
СМОТРЕТЬ РЕШЕНИЕ

2.23 Вагон тормозится, и его скорость за время t = 3,3 с равномерно уменьшается от v1 = 47,5 км/ч до v2 = 30 км/ч. Каким должен быть предельный коэффициент трения k между чемоданом и полкой, чтобы чемодан при торможении начал скользить по полке
СМОТРЕТЬ РЕШЕНИЕ

2.24 Канат лежит на столе так, что часть его свешивается со стола, и начинает скользить тогда, когда длина свешивающийся части составляет 1/4 его длины. Найти коэффициент трения k каната о стол.
СМОТРЕТЬ РЕШЕНИЕ

2.25 На автомобиль массой m = 1 т во время движения действует сила трения Fтр , равная 0,1 действующей на него силы тяжести mg . Найти силу тяги F, развиваемую мотором автомобиля, если автомобиль движется с постоянной скоростью в гору с уклоном 1 м на каждые 25 м пути; под гору с тем же уклоном.
СМОТРЕТЬ РЕШЕНИЕ

2.26 На автомобиль массой m = 1 т во время движения действует сила трения Fтр, равная 0,1 действующей на него силе тяжести mg . Какова должна быть сила тяги F, развиваемая мотором автомобиля, если автомобиль движется с ускорением 1 м/с2 в гору с уклоном 1 м на каждые 25 м пути.
СМОТРЕТЬ РЕШЕНИЕ

2.27 Тело лежит на наклонной плоскости, составляющей с горизонтом угол α = 4. При каком предельном коэффициенте трения к тело начнет скользить по наклонной плоскости? С каким ускорением а будет скользить тело по плоскости, если коэффициент трения k = 0,03? Какое время t потребуется для прохождения при этих условиях пути s = 100 м ? Какую скорость v будет иметь тело в конце пути
СМОТРЕТЬ РЕШЕНИЕ

2.28 Тело скользит по наклонной плоскости, составляющей с горизонтом угол α = 45. Пройдя путь s = 36,4 см, тело приобретает скорость v = 2 м/с. Найти коэффициент трения k тела о плоскость.
СМОТРЕТЬ РЕШЕНИЕ

2.29 Тело скользит по наклонной плоскости, составляющей с горизонтом угол α = 45. Зависимость пройденного пути s от времени t дается уравнением s = Сt^2, где С = 1,73 м/с2. Найти коэффициент трения к тела о плоскость.
СМОТРЕТЬ РЕШЕНИЕ

2.30 Две гири с массами m1 = 2 кг и m2 = 1 кг соединены нитью и перекинуты через невесомый блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити T. Трением в блоке пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.31 Невесомым блок укреплен на конце стола. Гири 1 и 2 одинаковой массы m1 = m2 = 1 кг соединены нитью и перекинуты через блок. Коэффициент трения гири 2 о стол k = 0,1. Найти ускорение a, с которым движутся гири, и силу натяжения нити Т
СМОТРЕТЬ РЕШЕНИЕ

2.32 Невесомый блок укреплен в вершине наклонной плоскости, составляющей с горизонтом угол α = 30. Гири 1 и 2 одинаковой массы m1 = m2 = 1 кг соединены нитью и перекинуты через блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити T. Трением гири о наклонную плоскость и трением в блоке пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.33 Невесомый блок укреплен в вершине наклонной плоскости, составляющей с горизонтом угол 30. Гири 1 и 2 одинаковой массы m1 = m2 = 1 кг соединены нитью и перекинуты через блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити Т. Коэффициент трения гири 2 о наклонную плоскость k = 0,1.
СМОТРЕТЬ РЕШЕНИЕ

2.34 Невесомый блок укреплен в вершине двух наклонных плоскостей, составляющих с горизонтом углы α = 30 и β = 45. Гири 1 и 2 одинаковой массы m = 1 кг соединены нитью и перекинуты через блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити Т. Трением гирь 1 и 2 о наклонные плоскости, а также трением в блоке пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.35 Невесомый блок укреплен в вершине двух наклонных плоскостей, составляющих с горизонтом углы 30 и 45. Гири 1 и 2 одинаковой массы m1 = m2 = 1 кг соединены нитью и перекинуты через блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити Т. Коэффициенты трения гирь 1 и 2 о наклонные плоскости 0,1. Показать, что из формул, дающих решение этой задачи, можно получить, как частные случаи, решения задач
СМОТРЕТЬ РЕШЕНИЕ

2.36 При подъеме груза массой m = 2 кг на высоту h = 1 м сила F совершает работу A = 78,5 Дж. С каким ускорением поднимается груз
СМОТРЕТЬ РЕШЕНИЕ

2.37 Самолет поднимается и на высоте h = 5 км достигает скорости v = 360 км/ч. Во сколько раз работа A1, совершаемая при подъеме против силы тяжести, больше работы A2, идущей на увеличение скорости самолета
СМОТРЕТЬ РЕШЕНИЕ

2.38 Какую работу A надо совершить, чтобы заставить движущееся тело массой m = 2 кг увеличить скорость с v1 = 2 м/с до v2 = 5 м/с; остановиться при начальной скорости v0 = 8 м/с
СМОТРЕТЬ РЕШЕНИЕ

2.39 Мяч, летящий со скоростью v1 = 15 м/с, отбрасывается ударом ракетки в противоположном направлении со скоростью v2 = 20 м/с. Найти изменение импульса mΔv мяча, если известно, что изменение его кинетической энергии W = 8,75 Дж.
СМОТРЕТЬ РЕШЕНИЕ

2.40 Камень, пущенный по поверхности льда со скоростью v = 3 м/с, прошел до остановки расстояние s = 20,4 м. Найти коэффициент трения камня о лед.
СМОТРЕТЬ РЕШЕНИЕ

2.41 Вагон массой m = 20 т, двигаясь равнозамедленно с начальной скоростью v0 = 54 км/ч, под действием силы трения Fтр = 6 кН через некоторое время останавливается. Найти работу сил трения и расстояние s, которое вагон пройдет до остановки.
СМОТРЕТЬ РЕШЕНИЕ

2.42 Шофер автомобиля, имеющего массу m = 1 т, начинает тормозить на расстоянии s = 25 м от препятствия на дороге. Сила трения в тормозных колодках автомобиля Fтр = 3,84 кН. При какой предельной скорости движения автомобиль успеет остановиться перед препятствием? Трением колес о дорогу пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.43 Трамвай движется с ускорением a = 49,0 см/с. Найти коэффициент трения k, если известно, что 50% мощности мотора идет на преодоление силы трения и 50% на увеличение скорости движения.
СМОТРЕТЬ РЕШЕНИЕ

2.44 Найти работу A, которую надо совершить, чтобы увеличить скорость движения тела массой m=1 т от v1 = 2 м/с до v2 = 6 м/с на пути s = 10 м. На всем пути действует сила трения 2 Н
СМОТРЕТЬ РЕШЕНИЕ

2.45 На автомобиль массой M = 1 т во время движения действует сила трения Fтр, равная 0,1 действующей на него силе тяжести mg. Какую массу m бензина расходует двигатель автомобиля на то, чтобы на пути s = 0,5 км увеличить скорость от v1 = 10 км/ч до v2 = 40 км/ч? К.п.д. двигателя n= 0,2, удельная теплота сгорания бензина q = 46 МДж/кг.
СМОТРЕТЬ РЕШЕНИЕ

2.46 Какую массу m бензина расходует двигатель автомобиля на пути s = 100 км, если при мощности двигателя N = 11 кВт скорость его движения v = 30 км/ч? К.п.д. двигателя 0,22, удельная теплота сгорания бензина q = 46 МДж/кг.
СМОТРЕТЬ РЕШЕНИЕ

2.47 Найти к.п.д. двигателя автомобиля, если известно, что при скорости движения v = 40 км/ч двигатель потребляет объем V = 13,5 л бензина на пути s = 100 км и развивает мощность N = 12 кВт. Плотность бензина ρ = 0,8*10^3 кг/м3, удельная теплота сгорания бензина q = 46 МДж/кг.
СМОТРЕТЬ РЕШЕНИЕ

2.48 Камень массой m = 1 кг брошен вертикально вверх с начальной скоростью v0 = 9,8 м/с. Построить график зависимости от времени t кинетической, потенциальной и полной W энергий камня для интервала 0< t <2 с
СМОТРЕТЬ РЕШЕНИЕ

2.49 В условиях предыдущей задачи построить график зависимости от расстояния h кинетической Wк, потенциальной Wn и полной W энергий камня.
СМОТРЕТЬ РЕШЕНИЕ

2.50 Камень падает с некоторой высоты в течение времени t = 1,43 c. Найти кинетическую и потенциальную энергии камня в средней точке пути. Масса камня 2 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.51 С башни высотой h = 25 м горизонтально брошен камень со скоростью v0 = 15 м/с. Найти кинетическую и потенциальную энергии камня через время t = 1 c после начала движения. Масса камня m = 0,2 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.52 Камень брошен со скоростью v0 = 15 м/c под углом 60 к горизонту. Найти кинетическую Wк, потенциальную Wп и полную W энергии камня через время t = l c после начала движения; в высшей точке траектории. Масса камня m = 0,2 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.53 На толкание ядра, брошенного под углом α = 30 к горизонту, затрачена работа A = 216 Дж. Через какое время t и на каком расстоянии от места бросания ядро упадет на землю? Масса ядра m = 2 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.54 Тело массой m = 10 г движется по окружности радиусом R = 6,4 см. Найти тангенциальное ускорение ат тела, если известно, что к концу второго оборота после начала движения его кинетическая энергия 0,8 МДж.
СМОТРЕТЬ РЕШЕНИЕ

2.55 Тело массой m = 1 кг скользит сначала по наклонной плоскости высотой h = 1 м и длиной склона l = 10 м, а затем по горизонтальной поверхности. Коэффициент трения на всем пути k = 0,05. Найти кинетическую энергию Wк тела у основания плоскости; скорость v тела у основания плоскости; расстояние S, пройденное телом по горизонтальной поверхности до остановки.
СМОТРЕТЬ РЕШЕНИЕ

2.56 Тело скользит сначала по наклонной плоскости составляющей угол α = 8 с горизонтом, а затем по горизонтальной поверхности. Найти коэффициент трения на всем пути, если известно, что тело проходит по горизонтальной плоскости то же расстояние, что и по наклонной плоскости.
СМОТРЕТЬ РЕШЕНИЕ

2.57 Тело массой m = 3 кг, имея начальную скорость v0 = 0 , скользит по наклонной плоскости высотой h = 0,5 м и длиной склона l = 1 м и приходит к основанию наклонной плоскости со скоростью v = 2,45 м/с. Найти коэффициент трения k тела о плоскость и количество теплоты, выделенное при трении.
СМОТРЕТЬ РЕШЕНИЕ

2.58 Автомобиль массой m = 2 т движется в гору с уклоном 4 м на каждые 100 м пути. Коэффициент трения k = 0,08. Найти работу, совершаемую двигателем автомобиля на пути S = 3 км, и мощность развиваемую двигателем, если известно, что путь S = 3 км был пройден за время t = 4 мин.
СМОТРЕТЬ РЕШЕНИЕ

2.59 Какую мощность N развивает двигатель автомобиля массой m = 1 т, если известно, что автомобиль едет с постоянной скоростью v = 36 км/ч по горизонтальной дороге; в гору с уклоном 5 м на каждые 100 м пути; под гору с тем же уклоном
СМОТРЕТЬ РЕШЕНИЕ

2.60 Автомобиль массой m = 1 т движется при выключенном моторе с постоянной скоростью v = 54 км/ч под гору с уклоном 4 м на каждые 100 м пути. Какую мощность должен развивать двигатель автомобиля, чтобы автомобиль двигался с той же скоростью в гору
СМОТРЕТЬ РЕШЕНИЕ

2.61 На рельсах стоит платформа массой m1 = 10 т. На платформе закреплено орудие массой m2 = 5 т, из которого производится выстрел вдоль рельсов. Масса снаряда m3 = 100 кг; его начальная скорость относительно орудия v0 = 500 м/с. Найти скорость u платформы в первый момент после выстрела, если платформа стоит неподвижно; платформа двигалась со скоростью v = 18 км/ч и выстрел был произведен в направлении, противоположном направлению ее движения.
СМОТРЕТЬ РЕШЕНИЕ

2.62 Из ружья массой m1 = 5 кг вылетает пуля массой m = 5 г со скоростью v2 = 600 м/c. Найти скорость v1 отдачи ружья.
СМОТРЕТЬ РЕШЕНИЕ

2.63 Человек массой m1 = 60 кг, бегущий со скоростью v1 = 8 км/ч, догоняет тележку массой m2 = 80 кг, движущуюся со скоростью v2 = 2,9 км/ч, и вскакивает на нее. С какой скоростью u будет двигаться тележка? С какой скоростью будет двигаться тележка, если человек бежал ей навстречу
СМОТРЕТЬ РЕШЕНИЕ

2.64 Снаряд массой m1 = 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью v1 = 500 м/с, попадает в вагон с песком, масса которого m2 = 10 т, и застревает в нем. Какую скорость получит вагон, если вагон стоял неподвижно; вагон двигался со скоростью v2 = 36 км/ч в том же направлении, что и снаряд; вагон двигался со скоростью v2 = 36 км/ч в направлении, противоположном движению снаряда
СМОТРЕТЬ РЕШЕНИЕ

2.65 Граната, летящая со скоростью v = 10 м/с, разорвалась на два осколка. Больший осколок, масса которого составляла 0,6 массы всей гранаты, продолжал двигаться в прежнем направлении, но с увеличенной скоростью u1 = 25 м/с. Найти скорость u2 меньшего осколка.
СМОТРЕТЬ РЕШЕНИЕ

2.66 Тело массой m1 = 1 кг, движущееся горизонтально со скоростью v1 = 1 м/с, догоняет второе тело массой m2 = 0,5 кг и неупруго соударяется с ним. Какую скорость и получат тела, если второе тело стояло неподвижно; второе тело двигалось со скоростью v2 = 0,5 м/с в направлении, что и первое тело; второе тело двигалось со скоростью v2 = 0,5 м/с в направлении, противоположном направлению движения первого тела.
СМОТРЕТЬ РЕШЕНИЕ

2.67 Конькобежец массой M = 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой m = 3 кг со скоростью v = 8 м/с. На какое расстояние s откатится при этом конькобежец, если коэффициент трения коньков о лед k = 0,02
СМОТРЕТЬ РЕШЕНИЕ

2.68 Человек, стоящий на неподвижной тележке, бросает в горизонтальном направлении камень массой m = 2 кг. Тележка с человеком покатилась назад, и в первый момент бросания ее скорость была v = 0,1 м/с. Масса тележки с человеком M = 100 кг. Найти кинетическую энергию брошенного камня через время t = 0,5 с после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

2.69 Тело массой m1 = 2 кг движется навстречу второму телу массой m2 = 1,5 кг и неупруго соударяется с ним. Скорости тел непосредственно перед ударом были v1 = 1 м/с и v2 = 2 м/с . Какое время t будут двигаться эти тела после удара, если коэффициент трения k = 0,05
СМОТРЕТЬ РЕШЕНИЕ

2.70 Автомат выпускает пули с частотой n = 600 мин-1. Масса каждой пули m = 4 г, ее начальная скорость v = 500 м/с. Найти среднюю силу отдачи при стрельбе.
СМОТРЕТЬ РЕШЕНИЕ

2.71 На рельсах стоит платформа массой m1 = 10 т. На платформе закреплено орудие массой m2 = 5 т, из которого производится выстрел вдоль рельсов. Масса снаряда m3 = 100 кг, его скорость относительно орудия v0 = 500 м/с. На какое расстояние s откатится платформа при выстреле, если платформа стояла неподвижно; платформа двигалась со скоростью v = 18 км/ч и выстрел был произведен в направлении ее движения; платформа двигалась со скоростью v = 18 км/ч и выстрел был произведен в направлении противоположном направлению ее движения
СМОТРЕТЬ РЕШЕНИЕ

2.72 Из орудия массой m1 = 5 т вылетает снаряд массой m2 = 100 кг. Кинетическая энергия снаряда при вылете Wк2 = 7,5 МДж. Какую кинетическую энергию Wк1 получает орудие вследствие отдачи
СМОТРЕТЬ РЕШЕНИЕ

2.73 Тело массой m1 = 2 кг движется со скоростью v1 = 3 м/с и нагоняет тело массой m2 = 8 кг, движущееся со скоростью v2 = 1 м/с. Считая удар центральным, найти скорости u1 и u2 тел после удара, если удар неупругий; упругий.
СМОТРЕТЬ РЕШЕНИЕ

2.74 Тело массой m1 = 2 кг движется со скоростью v1 = 3 м/с и нагоняет тело массой m2 = 8 кг, движущееся со скоростью v2 = 1 м/с. Найти соотношение между массами тел, чтобы при упругом ударе первое тело остановилось
СМОТРЕТЬ РЕШЕНИЕ

2.75 Тело массой m = 3 кг движется со скоростью v1 = 4 м/с и ударяется о неподвижное тело такой же массы. Считая удар центральным и неупругим, найти количество теплоты, выделившееся при ударе
СМОТРЕТЬ РЕШЕНИЕ

2.76 Тело массой m1 = 5 кг ударяется о неподвижное тело массой m2 = 2,5 кг, которое после удара начинает двигаться с кинетической энергией Wк2 = 5 Дж. Считая удар центральным и упругим, найти кинетическую энергию первого тела до и после удара.
СМОТРЕТЬ РЕШЕНИЕ

2.77 Тело массой m1 = 5 кг ударяется о неподвижное тело массой m2 = 2,5 кг. Кинетическая энергия системы двух тел непосредственно после удара стала Wк = 5 Дж. Считая удар центральным и неупругим, найти кинетическую энергию Wк1 первого тела до удара.
СМОТРЕТЬ РЕШЕНИЕ

2.78 Два тела движутся навстречу друг другу и соударяются неупруго. Скорости тел до удара были v1 = 2 м/с и v2 = 4 м/с. Общая скорость тел после удара u = 1 м/с и по направлению совпадает с направлением скорости v1. Во сколько раз кинетическая энергия Wк1 первого тела была больше кинетической энергии Wк2 второго тела
СМОТРЕТЬ РЕШЕНИЕ

2.79 Два шара с массами m1 = 0,2 кг и m2 = 0,1 кг подвешены на нитях одинаковой длины так, что они соприкасаются. Первый шар отклоняют на высоту h0 = 4,5 см и отпускают. На какую высоту h поднимутся шары после удара, если удар упругий; неупругий
СМОТРЕТЬ РЕШЕНИЕ

2.80 Пуля, летящая горизонтально, попадает в шар, подвешенный на невесомом жестком стержне, и застревает в нем. Масса пули в 1000 раз меньше массы шара. Расстояние от центра шара до точки подвеса стержня l = 1 м. Найти скорость v пули, если известно, что стержень с шаром отклонился от удара пули на угол 10
СМОТРЕТЬ РЕШЕНИЕ

2.81 Пуля, летящая горизонтально, попадает в шар, подвешенный на невесомом жестком стержне, и застревает в нем. Масса пули m1 = 5 г, масса шара m2 = 0,5 кг. Скорость пули v1 = 500 м/c. При каком предельном расстоянии l от центра шара до точки подвеса стержня шар от удара пули поднимется до верхней точки окружности
СМОТРЕТЬ РЕШЕНИЕ

2.82 Деревянным молотком, масса которого m1 = 0,5 кг, ударяют о неподвижную стенку. Скорость молотка в момент удара v1 = 1 м/с. Считая коэффициент восстановления при ударе молотка о стенку k = 0,5, найти количество теплоты, выделившееся при ударе
СМОТРЕТЬ РЕШЕНИЕ

2.83 Деревянным молотком, масса которого m1 = 0,5 кг, ударяют о неподвижную стенку. Скорость молотка в момент удара v1 = 1 м/с. Считая коэффициент восстановления при ударе молотка о стенку k = 0,5, найти импульс силы, полученный стенкой за время удара.
СМОТРЕТЬ РЕШЕНИЕ
2.84 Деревянный шарик массой m = 0,1 кг падает с высоты h1 = 2 м. Коэффициент восстановления при ударе шарика о пол k = 0,5. Найти высоту h2, на которую поднимется шарик после удара о пол, и количество теплоты, выделившееся при ударе.
СМОТРЕТЬ РЕШЕНИЕ

2.85 Пластмассовый шарик, падая с высоты h1 = 1 м несколько раз отскакивает от пола. Найти коэффициент восстановления k при ударе шарика о пол, если с момента падения до второго удара о пол прошло время t = 1,3 c.
СМОТРЕТЬ РЕШЕНИЕ

2.86 Стальной шарик, падая с высоты h1 = 1,5 м на стальную плиту, отскакивает от нее со скоростью v2 = 0,75·v1, где v1 скорость, с которой он подлетает к плите. На какую высоту h2 он поднимется? Какое время t пройдет с момента падения до второго удара о плиту
СМОТРЕТЬ РЕШЕНИЕ

2.87 Металлический шарик, падая с высоты h1 = 1 м на стальную плиту, отскакивает от нее на высоту h2 = 81 см. Найти коэффициент восстановления при ударе шарика о плиту.
СМОТРЕТЬ РЕШЕНИЕ

2.88 Стальной шарик массой m = 20 г, падая с высоты h1 = 1 м на стальную плиту, отскакивает от нес на высоту h2 = 81 см. Найти импульс силы, полученный плитой за время удара, и количество теплоты, выделившееся при ударе.
СМОТРЕТЬ РЕШЕНИЕ

2.89 Движущееся тело массой m1, ударяется о неподвижное тело массой m2. Считая удар неупругим и центральным, найти, какая часть кинетической энергии первого тела переходит при ударе в тепло. Задачу решить сначала в общем виде, а затем рассмотреть случаи m1 = m2; m1 = 9m2.
СМОТРЕТЬ РЕШЕНИЕ

2.90 Движущееся тело массой m1, ударяется о неподвижное тело массой m2. Считая удар упругим и центральным, найти, какую часть кинетической энергии Wк1 первое тело передает второму при ударе. Задачу решить сначала в общем виде, а затем рассмотреть случаи m1 = m2; m1 = 9m2
СМОТРЕТЬ РЕШЕНИЕ

2.91 Движущееся тело массой m1 ударяется о неподвижное тело массой m2. Каким должно быть отношение масс m1/m2, чтобы при центральном упругом ударе скорость первого тела уменьшилась в 1,5 раза? С какой кинетической энергией начинает двигаться при этом второе тело, если первоначальная кинетическая энергия первого тела 1 кДж
СМОТРЕТЬ РЕШЕНИЕ

2.92 Нейтрон масса m0 ударяется о неподвижное ядро атома углерода m = 12m0. Считая удар центральным и упругим, найти, во сколько раз уменьшится кинетическая энергия нейтрона при ударе.
СМОТРЕТЬ РЕШЕНИЕ

2.93 Нейтрон ударяется о неподвижное ядро атома углерода m = 12m0; атома урана m = 235m0. Считая удар центральным и упругим, найти, какую часть скорости v потеряет нейтрон при ударе.
СМОТРЕТЬ РЕШЕНИЕ

2.94 На какую часть уменьшится вес тела на экваторе вследствие вращения Земли вокруг оси
СМОТРЕТЬ РЕШЕНИЕ

2.95 Какой продолжительности T должны были бы быть сутки на Земле, чтобы тела на экваторе не имели веса.
СМОТРЕТЬ РЕШЕНИЕ

2.96 Трамвайный вагон массой m = 5 т идет по закруглению радиусом R = 128 м. Найти силу бокового давления колес на рельсы при скорости движения v = 9 км/ч.
СМОТРЕТЬ РЕШЕНИЕ

2.97 Ведерко с водой, привязанное к веревке длиной l = 60 см, равномерно вращается в вертикальной плоскости. Найти наименьшую скорость v вращения ведерка, при которой в высшей точке вода из него не выливается. Какова сила натяжения веревки T при этой скорости в высшей и низшей точках окружности
СМОТРЕТЬ РЕШЕНИЕ

2.98 Камень, привязанный к веревке длиной l = 50 см, равномерно вращается в вертикальной плоскости. При какой частоте вращения n веревка разорвется, если известно, что она разрывается при десятикратной силе тяжести, действующей на камень
СМОТРЕТЬ РЕШЕНИЕ

2.99 Камень, привязанный к веревке, равномерно вращается в вертикальной плоскости. Найти массу m камня, если известно, что разность между максимальной и минимальной силами натяжения веревки T = 10 Н.
СМОТРЕТЬ РЕШЕНИЕ

2.100 Гирька, привязанная к нити длиной l = 30 см, описывает в горизонтальной плоскости окружность радиусом R = 15 см. С какой частотой n вращается гирька
СМОТРЕТЬ РЕШЕНИЕ

2.101 Гирька массой m = 50 г, привязанная к нити длиной l = 25 см, описывает в горизонтальной плоскости окружность. Частота вращения гирьки n = 2 об/с. Найти силу натяжения нити
СМОТРЕТЬ РЕШЕНИЕ

2.102 Диск вращается вокруг вертикальной оси с частотой n = 30 об/мин. На расстоянии r = 20 см от оси вращения на диске лежит тело. Каким должен быть коэффициент трения k между телом и диском, чтобы тело не скатилось с диска
СМОТРЕТЬ РЕШЕНИЕ

2.103 Самолет, летящий со скоростью v = 900 км/ч, делает мертвую петлю. Каким должен быть радиус мертвой петли R, чтобы наибольшая сила, прижимающая летчика к сидению, была равна пятикратной силе тяжести, действующей на летчика; десятикратной силе тяжести, действующей на летчика
СМОТРЕТЬ РЕШЕНИЕ

2.104 Мотоциклист едет по горизонтальной дороге со скоростью v = 72 км/ч, делая поворот радиусом R = 100 м. На какой угол при этом он должен наклониться, чтобы не упасть при повороте
СМОТРЕТЬ РЕШЕНИЕ

2.105 К потолку трамвайного вагона подвешен на нити шар. Вагон идет со скоростью v = 9 км/ч по закруглению радиусом R = 36,4 м. На какой угол отклонится при этом нить с шаром
СМОТРЕТЬ РЕШЕНИЕ

2.106 Длина стержней центробежного регулятора l = 12,5 см. С какой частотой n должен вращаться центробежный регулятор, чтобы грузы отклонялись от вертикали на угол, равный 60; 30
СМОТРЕТЬ РЕШЕНИЕ

2.107 Шоссе имеет вираж с уклоном α = 10 при радиусе закругления дороги R = 100 м. На какую скорость v рассчитан вираж
СМОТРЕТЬ РЕШЕНИЕ

2.108 Груз массой m = 1 кг, подвешенный на нити, отклоняют на угол α = 30 и отпускают. Найти силу натяжения нити T в момент прохождения грузом положения равновесия.
СМОТРЕТЬ РЕШЕНИЕ

2.109 Мальчик массой m = 45 кг вращается на гигантских шагах с частотой n = 16 об/мин. Длина канатов l = 5 м. Какой угол α с вертикалью составляют канаты гигантских шагов? Каковы сила натяжения канатов и скорость вращения мальчика
СМОТРЕТЬ РЕШЕНИЕ

2.110 Груз массой m = 1 кг, подвешенный на невесомом стержне длиной l = 0,5 м, совершает колебания в вертикальной плоскости. При каком угле отклонения α стержня от вертикали кинетическая энергия груза в его нижнем положении Wк = 2,45 Дж? Во сколько раз при таком угле отклонения сила натяжения стержня в нижнем положении больше силы натяжения стержня в верхнем положении
СМОТРЕТЬ РЕШЕНИЕ

2.111 Груз массой m, подвешенный на невесомом стержне, отклоняют на угол α = 90 и отпускают. Найти силу натяжения T стержня в момент прохождения грузом положения равновесия.
СМОТРЕТЬ РЕШЕНИЕ

2.112 Груз массой m = 150 кг подвешен на стальной проволоке, выдерживающей силу натяжения T = 2,94 кН. На какой наибольший угол можно отклонить проволоку с грузом, чтобы она не разорвалась при прохождении грузом положения равновесия
СМОТРЕТЬ РЕШЕНИЕ

2.113 Камень массой m = 0,5 кг привязан к веревке длиной l = 50 см, равномерно вращается в вертикальной плоскости. Сила натяжения веревки в нижней точке окружности T = 44 Н. На какую высоту h поднимется камень, если веревка обрывается в тот момент, когда скорость направлена вертикально вверх
СМОТРЕТЬ РЕШЕНИЕ

2.114 Вода течет по трубе диаметром d = 0,2 м, расположенной в горизонтальной плоскости и имеющей закругление радиусом R = 20,0 м. Найти боковое давление воды p, вызванное центробежной силой. Через поперечное сечение трубы за единицу времени протекает масса воды m1 = 300 т/ч.
СМОТРЕТЬ РЕШЕНИЕ

2.115 Вода течет по каналу шириной b = 0,5 м, расположенному в горизонтальной плоскости и имеющему закругление радиусом R = 10 м. Скорость течения воды v = 5 м/с. Найти боковое давление воды P, вызванное центробежной силой.
СМОТРЕТЬ РЕШЕНИЕ

2.116 Найти работу A, которую надо совершить, чтобы сжать пружину на l = 20 см, если известно, что сила F пропорциональна сжатию l и жесткость пружины k = 2,94 кН/м.
СМОТРЕТЬ РЕШЕНИЕ

2.117 Найти наибольший прогиб h рессоры от груза массой m, положенного на ее середину, если статический прогиб рессоры от того же груза h0 = 2 см. Каким будет наибольший прогиб, если тот же груз падает на середину рессоры с высоты H = 1 м без начальной скорости
СМОТРЕТЬ РЕШЕНИЕ

2.118 Акробат прыгает в сетку с высоты H = 8 м. На какой предельной высоте h над полом надо натянуть сетку, чтобы акробат не ударился о пол при прыжке? Известно, что сетка прогибается на h0 = 0,5 м, если акробат прыгает в нее с высоты H0 = 1 м.
СМОТРЕТЬ РЕШЕНИЕ

2.119 Груз положили на чашку весов. Сколько делений покажет стрелка весов при первоначальном отбросе, если после успокоения качаний она показывает 5 делений
СМОТРЕТЬ РЕШЕНИЕ

2.120 Груз массой m = 1 кг падает на чашку весов с высоты H = 10 см. Каковы показания весов F в момент удара, если после успокоения качаний чашка весов опускается на h = 0,5 см
СМОТРЕТЬ РЕШЕНИЕ

2.121 С какой скоростью v двигался вагон массой m = 20 т, если при ударе о стенку каждый буфер сжался на l = 10 см? Жесткость пружины каждого буфера 1 МН/м.
СМОТРЕТЬ РЕШЕНИЕ

2.122 Мальчик, стреляя из рогатки, натянул резиновый шнур так, что его длина стала больше на 10 см. С какой скоростью v полетел камень массой m = 20 г
СМОТРЕТЬ РЕШЕНИЕ

2.123 К нижнему концу пружины, подвешенной вертикально, присоединена другая пружина, к концу которой прикреплен груз. Жесткости пружин равны k1 и k2. Пренебрегая массой пружин по сравнению с массой груза, найти отношение потенциальных энергий этих пружин.
СМОТРЕТЬ РЕШЕНИЕ

2.124 На двух параллельных пружинах одинаковой длины весит невесомый стержень длиной L = 10 см. Жесткости пружин k1 = 2 Н/м и k2 = 3 Н/м. В каком месте стержня надо подвесить груз, чтобы стержень оставался горизонтальным
СМОТРЕТЬ РЕШЕНИЕ

2.125 Резиновый мяч массой m = 0,1 кг летит горизонтально с некоторой скоростью и ударяется о неподвижную вертикальную стенку. За время t = 0,01 с мяч сжимается на 1,37 см; такое же время затрачивается на восстановление первоначальной формы мяча. Найти среднюю силу F, действующую на стенку за время удара.
СМОТРЕТЬ РЕШЕНИЕ

2.126 Гиря массой m = 0,5 кг, привязанная к резиновому шнуру длиной l0, описывает в горизонтальной плоскости окружность. Частота вращения гири n = 2 об/с. Угол отклонения шнура от вертикали 30. Жесткость шнура k = 0,6 кН/м. Найти длину l0 нерастянутого резинового шнура.
СМОТРЕТЬ РЕШЕНИЕ

2.127 Гирю массой m = 0,5 кг, привязанную к резиновому шнуру длиной l0 = 9,5 см, отклоняют на угол α = 90 и отпускают. Найти длину l резинового шнура в момент прохождения грузом положения равновесия
СМОТРЕТЬ РЕШЕНИЕ

2.128 Мяч радиусом R = 10 см плавает в воде так, что его центр масс находится на H = 9 см выше поверхности воды. Какую работу надо совершить, чтобы погрузить мяч в воду до диаметральной плоскости
СМОТРЕТЬ РЕШЕНИЕ

2.129 Шар радиусом R = 6 см удерживается внешней силой под водой так, что его верхняя точка касается поверхности воды. Какую работу произведет выталкивающая сила, если отпустить шар и предоставить ему свободно плавать? Плотность материала шара ρ = 0,5*10^3 кг/м3.
СМОТРЕТЬ РЕШЕНИЕ

2.130 Шар диаметром D = 30 см плавает в воде. Какую работу надо совершить, чтобы погрузить шар в воду на H = 5 см глубже
СМОТРЕТЬ РЕШЕНИЕ

2.131 Льдина площадью поперечного сечения S = 1 м2 и высотой h = 0,4 м плавает в воде. Какую работу надо совершить, чтобы полностью погрузить льдину в воду
СМОТРЕТЬ РЕШЕНИЕ

2.132 Найти силу гравитационного взаимодействия F между двумя протонами, находящимися на расстоянии r = 10-16 м друг от друга. Масса протона m = 1,67*10-27 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.133 Два медных шарика с диаметрами D1 = 4 см и D2 = 6 см находятся в соприкосновении друг с другом. Найти гравитационную потенциальную энергию этой системы.
СМОТРЕТЬ РЕШЕНИЕ

2.134 Вычислить гравитационную постоянную G, зная радиус земного шара R, среднюю плотность земли ρ и ускорение свободного падения g у поверхности Земли
СМОТРЕТЬ РЕШЕНИЕ

2.135 Принимая ускорение свободного падения у Земли g = 9,8 м/с2 и пользуясь данными табл. 5, составить таблицу значений средних плотностей планет Солнечной системы.
СМОТРЕТЬ РЕШЕНИЕ

2.136 Космическая ракета летит на Луну. В какой точке прямой, соединяющей центры масс Луны и Земли, ракета будет притягиваться Землей и Луной с одинаковой силой
СМОТРЕТЬ РЕШЕНИЕ

2.137 Сравнить ускорение свободного падения у поверхности Луны gл с ускорением свободного падения у поверхности Земли gз.
СМОТРЕТЬ РЕШЕНИЕ

2.138 Как изменится период колебания T математического маятника при перенесении его с Земли на Луну
СМОТРЕТЬ РЕШЕНИЕ

2.139 Найти первую космическую скорость v1, т.е. скорость, которую надо сообщить телу у поверхности Земли, чтобы оно начало двигаться по круговой орбите в качестве ее спутника.
СМОТРЕТЬ РЕШЕНИЕ

2.140 Найти вторую космическую скорость v2, т.е. скорость, которую надо сообщить телу у поверхности Земли, чтобы оно преодолело земное тяготение и навсегда удалилось от Земли.
СМОТРЕТЬ РЕШЕНИЕ

2.141 Принимая ускорение свободного падения у Земли равным g = 9,80 м/с2 и пользуясь данными табл. 5, составить таблицу значений первой и второй космических скоростей у поверхности планет Солнечной системы.
СМОТРЕТЬ РЕШЕНИЕ

2.142 Найти линейную скорость v движения Земли по круговой орбите.
СМОТРЕТЬ РЕШЕНИЕ

2.143 С какой линейной скоростью v будет двигаться искусственный спутник Земли по круговой орбите у поверхности Земли; на высоте h = 200 км и h = 7000 км от поверхности Земли? Найти период обращения T спутника Земли при этих условиях.
СМОТРЕТЬ РЕШЕНИЕ

2.144 Найти зависимость периода обращения T искусственного спутника, вращающегося по круговой орбите у поверхности центрального тела, от средней плотности этого тела. По данным, полученным при решении задачи, составить таблицу значений периодов обращений искусственных спутников вокруг планет Солнечной системы
СМОТРЕТЬ РЕШЕНИЕ

2.145 Найти центростремительное ускорение aц, с которым движется по круговой орбите искусственный спутник Земли, находящийся на высоте h = 200 км от поверхности Земли.
СМОТРЕТЬ РЕШЕНИЕ

2.146 Планета Марс имеет два спутника Фобос и Деймос. Первый находится на расстоянии r = 0,95*10^4 км от центра масс Марса, второй на расстоянии r = 2,4*10^4 км. Найти период обращения T1 и T2 этих спутников вокруг Марса.
СМОТРЕТЬ РЕШЕНИЕ

2.147 Искусственный спутник Земли движется по круговой орбите в плоскости экватора с запада на восток. На какой высоте h от поверхности Земли должен находиться этот спутник, чтобы он был неподвижен по отношению к наблюдателю, который находится на Земле
СМОТРЕТЬ РЕШЕНИЕ

2.148 Искусственный спутник Луны движется по круговой орбите на высоте h = 20 км от поверхности Луны. Найти линейную скорость v движения этого спутника, а также период его обращения вокруг Луны.
СМОТРЕТЬ РЕШЕНИЕ

2.149 Найти первую и вторую космические скорости для Луны
СМОТРЕТЬ РЕШЕНИЕ

2.150 Найти зависимость ускорения свободного падения g от высоты h над поверхностью Земли. На какой высоте h ускорение свободного падения gh составит 0,25 ускорения свободного падения у поверхности Земли.
СМОТРЕТЬ РЕШЕНИЕ

2.151 На какой высоте h от поверхности Земли ускорение свободного падения gh = 1 м/с2
СМОТРЕТЬ РЕШЕНИЕ

2.152 Во сколько раз кинетическая энергия Wк искусственного спутника Земли, движущегося по круговой орбите, меньше его гравитационной потенциальной энергии
СМОТРЕТЬ РЕШЕНИЕ

2.153 Найти изменение ускорения свободного падения при опускании тела на глубину h. На какой глубине ускорение свободного падения gh составляет 0,25 ускорения свободного падения g у поверхности Земли? Плотность Земли считать постоянной
СМОТРЕТЬ РЕШЕНИЕ

2.154 Каково соотношение между высотой Н горы и глубиной h шахты, если период колебания маятника на вершине горы и на дне шахты один и тот же
СМОТРЕТЬ РЕШЕНИЕ

2.155 Найти период обращения T вокруг Солнца искусственной планеты, если известно, что большая полуось R1 ее эллиптической орбиты превышает большую полуось R2 земной орбиты на ΔR = 0,24*10^8 км.
СМОТРЕТЬ РЕШЕНИЕ

2.156 Орбита искусственной планеты близка к круговой. Найти линейную скорость v ее движения и период T ее обращения вокруг Солнца, считая известным диаметр Солнца D и его среднюю плотность
СМОТРЕТЬ РЕШЕНИЕ

2.157 Большая полуось R1 эллиптической орбиты первого в мире спутника Земли меньше большой полуоси R2 орбиты второго спутника на 800 км. Период обращения вокруг Земли первого спутника в начале его движения был T1 = 96,2 мин. Найти большую полуось R2 орбиты второго искусственного спутника Земли и период его обращения вокруг Земли.
СМОТРЕТЬ РЕШЕНИЕ

2.158 Минимальное удаление от поверхности Земли космического корабля-спутника Восток-2 составляло hmin = 183 км, а максимальное удаление - hmax = 244 км. Найти период обращения спутника вокруг Земли.
СМОТРЕТЬ РЕШЕНИЕ

2.159 Имеется кольцо радиусом R. Радиус проволоки равен r, плотность материала равна ρ. Найти силу F, с которой это кольцо притягивает материальную точку массой m, находящуюся на оси кольца на расстоянии L от его центра.
СМОТРЕТЬ РЕШЕНИЕ

2.160 Имеется кольцо радиусом R = 20 см из медной проволоки. Найти силу F, с которой это кольцо притягивает материальную точку массой m = 2 г, находящуюся на оси кольца на расстоянии L = 0, 5, 10, 15, 20 и 50 см от его центра. Составить таблицу значений F и представить графически зависимость F = f(L). На каком расстоянии Lmax от центра кольца сила имеет максимальное значение Fmax и каково это значение
СМОТРЕТЬ РЕШЕНИЕ

2.161 Сила взаимодействия между кольцом и материальной точкой, находящейся на оси кольца, имеет максимальное значение Fmax, когда точка находится на расстоянии Lmax от центра кольца. Во сколько раз сила взаимодействия F между кольцом и материальной точкой, находящейся на расстоянии 0,5Lmax от центра кольца, меньше максимальной силы
СМОТРЕТЬ РЕШЕНИЕ
3.1 Найти момент инерции J и момент импульса L земного шара относительно оси вращения.
СМОТРЕТЬ РЕШЕНИЕ

3.2 Два шара одинакового радиуса R = 5 см закреплены на концах невесомого стержня. Расстояние между шарами r = 0,5 м. Масса каждого шара m = 1 кг. Найти момент инерции J1 системы относительно оси, проходящей через середину стержня перпендикулярно к нему; момент инерции J2 системы относительно той же оси, считая шары материальными точками, массы которых сосредоточены в их центрах; относительную ошибку (J1 - J2)/J2, которую мы допускаем при вычислении момента инерции системы, заменяя величину J1 величиной J2.
СМОТРЕТЬ РЕШЕНИЕ

3.3 К ободу однородного диска радиусом R = 0,2 м приложена касательная сила F = 98,1 Н. При вращении на диск действует момент сил трения Мтр = 98,1 Н*м. Найти массу m дисков, если известно, что диск вращается с угловым ускорением 100 рад/с2.
СМОТРЕТЬ РЕШЕНИЕ

3.4 Однородный стержень длиной l = 1 м и массой m = 0,5 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением вращается стержень, если на него действует момент сил 98,1 мН*м
СМОТРЕТЬ РЕШЕНИЕ

3.5 Однородный диск радиусом R = 0,2 м и массой m = 0,5 кг вращается вокруг оси, проходящей через его центр перпендикулярно к его плоскости. Зависимость угловой скорости вращения диска от времени t дается уравнением ω = А + Bt, где В = 8 рад/с2. Найти касательную силу F, приложенную к ободу диска
СМОТРЕТЬ РЕШЕНИЕ

3.6 Маховик, момент инерции которого J = 63,6 кг*м2 вращается с угловой скоростью 31,4 рад/с. Найти момент сил торможения М, под действием которого маховик останавливается через время t = 20 c. Маховик считать однородным диском.
СМОТРЕТЬ РЕШЕНИЕ

3.7 К ободу колеса радиусом 0,5 м и массой m = 50 кг приложена касательная сила F = 98,1 H. Найти угловое ускорение e колеса. Через какое время t после начала действия силы колесо будет иметь частоту вращения n = 100 об/с? Колесо считать однородным диском
СМОТРЕТЬ РЕШЕНИЕ

3.8 Маховик радиусом R = 0,2 м и массой m = 10 кг соединен с мотором при помощи приводного ремня. Сила натяжения ремня, идущего без скольжения, T = 14,7 Н. Какую частоту вращения n будет иметь маховик через время t = 10 с после начала движения? Маховик считать однородным диском
СМОТРЕТЬ РЕШЕНИЕ

3.9 Маховое колесо, момент инерции которого J = 245 кг*м2 , вращается с частотой n = 20 об/с. Через время t = 1 мин после того, как на колесо перестал действовать момент сил, оно остановилось. Найти момент сил трения Мтр и число оборотов, которое сделало колесо до полной остановки после прекращения действия сил. Колесо считать однородным диском.
СМОТРЕТЬ РЕШЕНИЕ

3.10 Две гири с массами m1 = 2 кг и m2 = 1 кг соединены нитью, перекинутой через блок массой m = 1 кг. Найти ускорение a, с которым движутся гири, и силы натяжения нитей, к которым подвешены гири. Блок считать однородным диском. Трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3.11 На барабан массой m0 = 9 кг намотан шнур, к концу которого привязан груз массой m = 2 кг. Найти ускорение а груза. Барабан считать однородным цилиндром. Трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3.12 На барабан радиусом R = 0,5 м намотан шнур, к концу которого привязан груз массой m = 10 кг. Найти момент инерции J барабана, если известно, что груз опускается с ускорением a = 2,04 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

3.13 На барабан радиусом R = 20 см, момент инерции которого J = 0,1 кг*м2, намотан шнур, к концу которого привязан груз массой m = 0,5 кг. До начала вращения барабана высота груза над полом 1 м. Через какое время t груз опустится до пола? Найти кинетическую энергию груза в момент удара о пол и силу натяжения нити
СМОТРЕТЬ РЕШЕНИЕ

3.14 Две гири с разными массами соединены нитью, перекинутой через блок, момент инерции которого J = 50 кг*м2 и радиус R = 20 см. Момент сил трения вращающегося блока 98,1 Н*м. Найти разность сил натяжения нити T1 - T2 по обе стороны блока, если известно, что блок вращается с угловым ускорением e = 2,36 рад/с2. Блок считать однородным диском.
СМОТРЕТЬ РЕШЕНИЕ

3.15 Блок массой m = 1 кг укреплен на конце стола. Гири 1 и 2 одинаковой массы m1 = m2 = 1 кг соединены нитью, перекинутой через блок. Коэффициент трения гири 2 о стол k = 0,1. Найти ускорение a, с которым движутся гири, и силы натяжения нитей. Блок считать однородным диском
СМОТРЕТЬ РЕШЕНИЕ

3.16 Диск массой m = 2 кг катится без скольжения по горизонтальный плоскости со скоростью v = 4 м/с. Найти кинетическую энергию диска.
СМОТРЕТЬ РЕШЕНИЕ

3.17 Шар диаметром D = 6 см и массой m = 0,25 кг катится без скольжения по горизонтальной плоскости с частотой вращения n = 4 об/с. Найти кинетическую энергию Wк шара.
СМОТРЕТЬ РЕШЕНИЕ

3.18 Обруч и диск одинаковой массы m1 = m2 катятся без скольжения с одной и той же скоростью v. Кинетическая энергия обруча Wк1 = 4 кгс*м. Найти кинетическую энергию Wк2 диска.
СМОТРЕТЬ РЕШЕНИЕ

3.19 Шар массой m = 1 кг катится без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку v = 10 см/с, после удара u = 8 см/с. Найти количество теплоты Q, выделившееся при ударе шара о стенку.
СМОТРЕТЬ РЕШЕНИЕ

3.20 Найти относительную ошибку, которая получится при вычислении кинетической энергии Wк катящегося шара, если не учитывать вращения шара.
СМОТРЕТЬ РЕШЕНИЕ

3.21 Диск диаметром D = 60 см и массой m = 1 кг вращается вокруг оси, проходящей через центр перпендикулярно к его плоскости с частотой n = 20 об/с. Какую работу А надо совершить, чтобы остановить диск
СМОТРЕТЬ РЕШЕНИЕ

3.22 Кинетическая энергия вала, вращающегося с частотой n = 5 об/с, Wк = 60 Дж. Найти момент импульса вала
СМОТРЕТЬ РЕШЕНИЕ

3.23 Найти кинетическую Wк энергию велосипедиста, едущего со скоростью v = 9 км/ч. Масса велосипедиста вместе с велосипедом m = 78 кг, причем на колеса приходится масса 3 кг. Колеса велосипеда считать обручами.
СМОТРЕТЬ РЕШЕНИЕ

3.24 Мальчик катит обруч по горизонтальной дороге со скоростью v = 7,2 км/ч. На какое расстояние s может вкатиться обруч на горку за счет его кинетической энергии? Уклон горки равен 10 м на каждые 100 м пути
СМОТРЕТЬ РЕШЕНИЕ

3.25 С какой наименьшей высоты h должен съехать велосипедист, чтобы по инерции без трения проехать дорожку, имеющую форму мертвой петли радиусом R = 3 м и смог оторваться от дорожки в верхней точке петли? Масса велосипедиста вместе с велосипедом m = 75 кг, причем на колеса приходится масса 3 кг. Колеса велосипеда считать обручами
СМОТРЕТЬ РЕШЕНИЕ

3.26 Медный шар радиусом R = 10 см вращается с частотой n = 2 об/с вокруг оси, проходящей через его центр. Какую работу А надо совершить, чтобы увеличить угловую скорость вращения шара вдвое
СМОТРЕТЬ РЕШЕНИЕ

3.27 Найти линейные ускорения а центров масс шара, диска и обруча, скатывающихся без скольжения с наклонной плоскости. Угол наклона плоскости 30, начальная скорость всех тел v0 = 0. Сравнить найденные ускорения с ускорением тела, соскальзывающего с наклонной плоскости при отсутствии трения.
СМОТРЕТЬ РЕШЕНИЕ

3.28 Найти линейные скорости v движения центров масс шара, диска и обруча, скатывающихся без скольжения с наклонной плоскости. Высота наклонной плоскости h = 0,5 м, начальная скорость всех тел v0 = 0. Сравнить найденные скорости со скоростью тела, соскальзывающего с наклонной плоскости при отсутствии трения.
СМОТРЕТЬ РЕШЕНИЕ

3.29 Имеются два цилиндра: алюминиевый сплошной и свинцовый полый одинакового радиуса R = 6 см и одинаковой массы m = 0,5 кг. Поверхности цилиндров окрашены одинаково. Как, наблюдая поступательные скорости цилиндров у основания наклонной плоскости, можно различить их? Найти моменты инерции этих цилиндров. За какое время t каждый цилиндр скатится без скольжения с наклонной плоскости? Высота наклонной плоскости h = 0,5 м, угол наклона плоскости 30, начальная скорость каждого цилиндра 0
СМОТРЕТЬ РЕШЕНИЕ

3.30 Колесо, вращаясь равнозамедленно, уменьшило за время t = 1 мин частоту вращения от n1 = 300 об/мин до m2 = 180 об/мин. Момент инерции колеса J = 2 кг*м2. Найти угловое ускорение e колеса, момент сил торможения, работу А сил торможения и число оборотов N, сделанных колесом за время 1 мин
СМОТРЕТЬ РЕШЕНИЕ

3.31 Вентилятор вращается с частотой n = 900 об/мин, После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки N = 75 об. Работа сил торможения А = 44,4 Дж. Найти момент инерции вентилятора и момент сил торможения
СМОТРЕТЬ РЕШЕНИЕ

3.32 Маховое колесо, момент инерции которого J = 245 кг*м2, вращается с частотой п = 20 об/с. После того как на колесо перестал действовать вращающий момент, оно остановилось, сделав N = 1000 об. Найти момент сил трения и время t, прошедшее от момента прекращения действия вращающего момента до остановки колеса.
СМОТРЕТЬ РЕШЕНИЕ

3.33 По ободу шкива, насаженного на общую ось с маховым колесом, намотана нить, к концу который подвешен груз массой m = 1 кг. На какое расстояние h должен опуститься груз, чтобы колесо со шкивом получило частоту вращения n = 60 об/мин? Момент инерции колеса со шкивом J = 0,42 кг*м2, радиус шкива R = 10 см.
СМОТРЕТЬ РЕШЕНИЕ

3.34 Маховое колесо начинает вращаться с угловым ускорением e = 0,5 рад/с2 и через время t1 = 15 с после начала движения приобретает момент импульса L = 73,5 кг*м2/с. Найти кинетическую энергию колеса через время t2 = 20 с после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

3.35 Маховик вращается с частотой n = 10 об/с. Его кинетическая энергия = 7,85 кДж. За какое время t момент сил M = 50 Н*м, приложенный к маховику, увеличит угловую скорость маховика вдвое
СМОТРЕТЬ РЕШЕНИЕ

3.36 К ободу диска массой m = 5 кг приложена касательная сила F = 19,6 H. Какую кинетическую энергию будет иметь диск через время t = 5 с после начала действия силы
СМОТРЕТЬ РЕШЕНИЕ

3.37 Однородный стержень длиной l = 1 м подвешен на горизонтальной оси, проходящей через верхний конец стержня. На какой угол надо отклонить стержень, чтобы нижний конец стержня при прохождении положения равновесия имел скорость v = 5 м/с
СМОТРЕТЬ РЕШЕНИЕ

3.38 Однородный стержень длиной l = 85 см подвешен на горизонтальной оси, проходящей через верхний конец стержня. Какую скорость v надо сообщить нижнему концу стержня, чтобы он сделал полный оборот вокруг оси
СМОТРЕТЬ РЕШЕНИЕ

3.39 Карандаш длиной l = 15 см, поставленный вертикально, падает на стол. Какую угловую и линейную скорость v будет иметь в конце падения середина и верхний конец карандаша
СМОТРЕТЬ РЕШЕНИЕ

3.40 Горизонтальная платформа массой m = 100 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n1 = 10 об/мин. Человек массой m0 = 60 кг стоит при этом на краю платформы. С какой частотой n2 начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу однородным диском, а человека точечной массой.
СМОТРЕТЬ РЕШЕНИЕ

3.41 Какую работу А совершает человек при переходе от края платформы к ее центру в условиях предыдущей задачи? Радиус платформы R = 1,5 м.
СМОТРЕТЬ РЕШЕНИЕ

3.42 Горизонтальная платформа массой m = 80 кг и радиусом R = 1 м вращается с частотой n1 = 20 об/мин. В центре платформы стоит человек и держит в расставленных руках гири. С какой частотой n2 будет вращаться платформа, если человек, опустив руки, уменьшит свой момент инерции от J1 = 2,94 до J2 = 0,98 кг*м2
СМОТРЕТЬ РЕШЕНИЕ

3.43 Во сколько раз увеличилась кинетическая энергия платформы с человеком в условиях предыдущей задачи
СМОТРЕТЬ РЕШЕНИЕ

3.44 Человек массой m0 = 60 кг находится на неподвижной платформе массой m = 100 кг. С какой частотой n будет вращаться платформа, если человек будет двигаться по окружности радиусом r = 5 м вокруг оси вращения? Скорость движения человека относительно платформы V0 = 4 км/ч. Радиус платформы R = 10 м.
СМОТРЕТЬ РЕШЕНИЕ

3.45 Однородный стержень длиной l = 0,5 м совершает малые колебания в вертикальной плоскости около горизонтальный оси, проходящей через его верхний конец. Найти период колебаний стержня.
СМОТРЕТЬ РЕШЕНИЕ

3.46 Найти период колебания стержня предыдущей задачи, если ось вращения проходит через точку, находящуюся на расстоянии d = 10 см от его верхнего конца.
СМОТРЕТЬ РЕШЕНИЕ

3.47 На концах вертикального стержня укреплены два груза. Центр масс грузов находится ниже середины стержня на расстоянии d = 5 см. Найти длину стержня l, если известно, что период малых колебаний стержня с грузами вокруг горизонтальный оси, проходящей через его середину, 2 c.
СМОТРЕТЬ РЕШЕНИЕ

3.48 Обруч диаметром D = 56,5 см висит на гвозде, вбитом в стенку, и совершает малые колебания в плоскости, параллельной стене. Найти период колебаний обруча.
СМОТРЕТЬ РЕШЕНИЕ

3.49 Какой наименьшей длины l надо взять нить, к которой подвешен однородный шарик диаметром D = 4 см, чтобы при определении периода малых колебаний шарика рассматривать его как математический маятник? Ошибка при таком допущении не должна превышать 1%.
СМОТРЕТЬ РЕШЕНИЕ

3.50 Однородный шарик подвешен на нити, длина которой l равна радиусу шарика R. Во сколько раз период малых колебаний T1 этого маятника больше периода малых колебаний T2 математического маятника с таким же расстоянием от центра масс до точки подвеса
СМОТРЕТЬ РЕШЕНИЕ