Решение задач » Решебники онлайн » Решебники по физике онлайн » Решебник Чертов онлайн (ГДЗ Чертов - решение задач из задачника, соавтор Воробьев)
Решебник Чертов онлайн
Решебник Чертова, Воробьева по физике

Кинематика

1 Кинематическое уравнение движения материальной точки по прямой ось x имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, C=-0,5 м/с3. Для момента времени t1=2 с определить координату x1 точки, мгновенную скорость, мгновенное ускорение a1
СМОТРЕТЬ РЕШЕНИЕ

2 Кинематическое уравнение движения материальной точки по прямой ось x имеет вид A+Bt+Ct2, где A=5 м, В=4 м/с, С=-1 м/с2. Построить график зависимости координаты x и пути s от времени. Определить среднюю скорость за интервал времени от t1=1 до t2=6 c. 3. Найти среднюю путевую скорость за тот же интервал времени.
СМОТРЕТЬ РЕШЕНИЕ

3 Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение движения автомобиля A+Bt+Ct2, где A=10 м, B=10 м/с, C=-0,5 м/с2. Найти скорость автомобиля, его тангенциальное, нормальное и полное ускорения в момент времени t=5 c; длину пути s и модуль перемещения автомобиля за интервал времени τ=10 c, отсчитанный с момента начала движения
СМОТРЕТЬ РЕШЕНИЕ

4 Маховик, вращавшийся с постоянной частотой n0=10 с-1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой n=6. Определить угловое ускорение ε маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N=50 оборотов.
СМОТРЕТЬ РЕШЕНИЕ

1.1 Две прямые дороги пересекаются под углом 60. От перекрестка по ним удаляются машины: одна со скоростью v1=60 км/ч, другая со скоростью v2=80 км/ч. Определить скоростии, с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.
СМОТРЕТЬ РЕШЕНИЕ

1.2 Точка двигалась в течение 15 с со скоростью v1=5 м/с, в течение t2=10 с со скоростью v2=8 м/с и в течение t3=6 с со скоростью v3=20 м/с. Определить среднюю путевую скорость точки.
СМОТРЕТЬ РЕШЕНИЕ

1.3 Три четверти своего пути автомобиль прошел со скоростью v1=60 км/ч, остальную часть пути со скоростью v2=80 км/ч. Какова средняя путевая скорость автомобиля
СМОТРЕТЬ РЕШЕНИЕ

1.4 Первую половину пути тело двигалось со скоростью v1=2 м/с, вторую со скоростью v2=8 м/с. Определить среднюю путевую скорость
СМОТРЕТЬ РЕШЕНИЕ

1.5 Тело прошло первую половину пути за время t1=2 c, вторую за время t2=8 c. Определить среднюю путевую скорость тела, если длина пути s=20 м.
СМОТРЕТЬ РЕШЕНИЕ

1.6 Зависимость скорости от времени для движения некоторого тела представлена на рис. 1.4. Определить среднюю путевую скорость за время t=14 c.
СМОТРЕТЬ РЕШЕНИЕ

1.7 Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость за время t=8 c. Начальная скорость v0=0.
СМОТРЕТЬ РЕШЕНИЕ

1.8 Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, В=-0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.
СМОТРЕТЬ РЕШЕНИЕ

1.9 На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось
СМОТРЕТЬ РЕШЕНИЕ

1.10 Движение материальной точки задано уравнением x=At+Bt2, где А=4 м/с, В=-0,05 м/с2. Определить момент времени, в который скорость v точки равна нулю. Найти координату и ускорение в этот момент. Построить графики зависимости координаты, пути, скорости и ускорения этого движения от времени.
СМОТРЕТЬ РЕШЕНИЕ

1.11 Написать кинематическое уравнение движения x=f(t) точки для четырех случаев, представленных на рис. 1.6. На каждой позиции рисунка изображена координатная ось Ох, указаны начальные положение х0 и скорость v0 материальной точки A, а также ее ускорение a.
СМОТРЕТЬ РЕШЕНИЕ

1.12 Прожектор О установлен на расстоянии 100 м от стены AB и бросает светлое пятно на эту стену. Прожектор вращается вокруг вертикальной оси, делая один оборот за время T=20 c. Найти уравнение движения светлого пятна по стене в течение первой четверти оборота; скорость, с которой светлое пятно движется по стене, в момент времени t=2 c. За начало отсчета принять момент, когда направление луча совпадает с OC
СМОТРЕТЬ РЕШЕНИЕ

1.13 Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением a=0,1 м/с2, человек начал идти в том же направлении со скоростью v=1,5 м/с. Через какое время t поезд догонит человека? Определить скорость v1 поезда в этот момент и путь, пройденный за это время человеком.
СМОТРЕТЬ РЕШЕНИЕ

1.14 Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через 2 с после первой. Первая точка двигалась с начальной скоростью v1=1 м/с и ускорением a1=2 м/с2, вторая с начальной скоростью v2=10 м/с и ускорением а2=1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?
СМОТРЕТЬ РЕШЕНИЕ

1.15 Движения двух материальных точек выражаются уравнениями x1=A1+B1t+C1t2, x2=A2+B2t+C2t2, где A1=20 м, A2=2 м, B2=B1=2 м/с, C1=-4 м/с2, C2=0,5 м/с2. В какой момент времени скорости этих точек будут одинаковыми? Определить скорости v1 и v2 и ускорения a1 и a2 точек в этот момент.
СМОТРЕТЬ РЕШЕНИЕ

1.16 Две материальные точки движутся согласно уравнениям: x1=A1t+B1t2+C1t3, x2=A2t+B2t2+C2t3, где A1=4 м/с, B1=8 м/с2, C1=-16 м/с3, A2=2 м/с, B2=-4 м/с2, C2=1 м/с3. В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v1 и v2 точек в этот момент.
СМОТРЕТЬ РЕШЕНИЕ

1.17 С какой высоты H упало тело, если последний метр своего пути оно прошло за время t=0,1 с
СМОТРЕТЬ РЕШЕНИЕ

1.18 Камень падает с высоты h=1200 м. Какой путь s пройдет камень за последнюю секунду своего падения
СМОТРЕТЬ РЕШЕНИЕ

1.19 Камень брошен вертикально вверх с начальной скоростью v0=20 м/с. По истечении какого времени камень будет находиться на высоте h=15 м? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g=10 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

1.20 Вертикально вверх с начальной скоростью v0=20 м/с брошен камень. Через τ=1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни
СМОТРЕТЬ РЕШЕНИЕ

1.21 Тело, брошенное вертикально вверх, находилось на одной и той же высоте h=8,6 м два раза с интервалом t=3 c. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.
СМОТРЕТЬ РЕШЕНИЕ

1.22 С балкона бросили мячик вертикально вверх с начальной скоростью v0=5 м/с. Через t=2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.
СМОТРЕТЬ РЕШЕНИЕ

1.23 Тело брошено с балкона вертикально вверх со скоростью v0=10 м/с. Высота балкона над поверхностью земли h=12,5 м. Написать уравнение движения и определить среднюю путевую скорость с момента бросания до момента падения на землю.
СМОТРЕТЬ РЕШЕНИЕ

1.24 Движение точки по прямой задано уравнением x=At+Bt2, где А=2 м/с, В=-0,5 м/с2. Определить среднюю путевую скорость движения точки в интервале времени от t1=1 с до t2=3 c.
СМОТРЕТЬ РЕШЕНИЕ

1.25 Точка движется по прямой согласно уравнению x=At+Bt3, где А=6 м/с, В=-0,125 м/с3. Определить среднюю путевую скорость точки в интервале времени от t1=2 с до t2=6 c.
СМОТРЕТЬ РЕШЕНИЕ

1.26 Материальная точка движется по плоскости согласно уравнению r(t)=iAt3+jBt2. Написать зависимости v(t); a(t)
СМОТРЕТЬ РЕШЕНИЕ

1.27 Движение материальной точки задано уравнением r(t)=A(i cos ωt+j sin ωt), где А=0,5 м, ω=5 рад/с. Начертить траекторию точки. Определить модуль скорости и модуль нормального ускорения
СМОТРЕТЬ РЕШЕНИЕ

1.28 Движение материальной точки задано уравнением r(t)=i(A+Bt2)+jCt, где A=10 м, В=-5 м/с2, С=10 м/с. Начертить траекторию точки. Найти выражения v(t) и a(t). Для момента времени t=1 с вычислить: модуль скорости; модуль ускорения; модуль тангенциального ускорения; модуль нормального ускорения
СМОТРЕТЬ РЕШЕНИЕ

1.29 Точка движется по кривой с постоянным тангенциальным ускорением 0,5 м/с2. Определить полное ускорение a точки на участке кривой с радиусом кривизны R=3 м, если точка движется на этом участке со скоростью v=2 м/с.
СМОТРЕТЬ РЕШЕНИЕ

1.30 Точка движется по окружности радиусом R=4 м. Начальная скорость v0 точки равна 3 м/с, тангенциальное ускорение 1 м/с2. Для момента времени t=2 с определить: длину пути s, пройденного точкой; модуль перемещения; среднюю путевую скорость; модуль вектора средней скорости
СМОТРЕТЬ РЕШЕНИЕ

1.31 По окружности радиусом R=5 м равномерно движется материальная точка со скоростью v=5 м/с. Построить графики зависимости длины пути s и модуля перемещения от времени t. В момент времени, принятый за начальный, s(0) и r(0) считать равными нулю
СМОТРЕТЬ РЕШЕНИЕ

1.32 За время t=6 с точка прошла путь, равный половине длины окружности радиусом R=0,8 м. Определить среднюю путевую скорость за это время и модуль вектора средней скорости
СМОТРЕТЬ РЕШЕНИЕ

1.33 Движение точки по окружности радиусом R=4 м задано уравнением A+Bt+Ct2, где A=10 м, В=-2 м/с, С=1 м/с2. Найти тангенциальное нормальное и полное ускорения точки в момент времени t=2 c.
СМОТРЕТЬ РЕШЕНИЕ

1.34 По дуге окружности радиусом R=10 м движется точка. В некоторый момент времени нормальное ускорение точки 4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол 60. Найти скорость v и тангенциальное ускорение точки.
СМОТРЕТЬ РЕШЕНИЕ

1.35 Точка движется по окружности радиусом R=2 м согласно уравнению ξ=At3, где A=2 м/с3. В какой момент времени t нормальное ускорение точки будет равно тангенциальному? Определить полное ускорение а в этот момент.
СМОТРЕТЬ РЕШЕНИЕ

1.36 Движение точки по кривой задано уравнениями x=A1t3 y=A2t, где A1=1 м/с3, A2=2 м/с. Найти уравнение траектории точки, ее скорость и полное ускорение в момент времени t=0,8 c.
СМОТРЕТЬ РЕШЕНИЕ

1.37 Точка A движется равномерно со скоростью v по окружности радиусом R. Начальное положение точки и направление движения указаны на рис. 1.8. Написать кинематическое уравнение движения проекции точки A на направление оси x.
СМОТРЕТЬ РЕШЕНИЕ

1.38 Точка движется равномерно со скоростью v по окружности радиусом R и в момент времени, принятый за начальный t=0, занимает положение, указанное на рис. 1.8. Написать кинематические уравнения движения точки в декартовой системе координат, расположив оси так, как это указано на рисунке; в полярной системе координат (ось x считать полярной осью)
СМОТРЕТЬ РЕШЕНИЕ

1.39 Написать для четырех случаев, представленных на рис. 1.9: кинематические уравнения движения x=f1(t) и y=f2(t); уравнение траектории y=φ(x). На каждой позиции рисунка изображены координатные оси, указаны начальное положение точки A, ее начальная скорость v0 и ускорение g.
СМОТРЕТЬ РЕШЕНИЕ

1.40 С вышки бросили камень в горизонтальном направлении. Через промежуток времени t=2 с камень упал на землю на расстоянии s=40 м от основания вышки. Определить начальную v0 и конечную v скорости камня.
СМОТРЕТЬ РЕШЕНИЕ

1.41 Тело, брошенное с башни в горизонтальном направлении со скоростью v=20 м/с, упало на землю на расстоянии s от основания башни, вдвое большем высоты h башни. Найти высоту башни.
СМОТРЕТЬ РЕШЕНИЕ

1.42 Пистолетная пуля пробила два вертикально закрепленных листа бумаги, расстояние между которыми равно 30 м. Пробоина во втором листе оказалась на h=10 см ниже, чем в первом. Определить скорость пули, если к первому листу она подлетела, двигаясь горизонтально. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

1.43 Самолет, летевший на высоте h=2940 м со скоростью v=360 км/ч, сбросил бомбу. За какое время t до прохождения над целью и на каком расстоянии s от нее должен самолет сбросить бомбу, чтобы попасть в цель? Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

1.44 Тело брошено под некоторым углом к горизонту. Найти этот угол, если горизонтальная дальность s полета тела в четыре раза больше максимальной высоты H траектории.
СМОТРЕТЬ РЕШЕНИЕ

1.45 Миномет установлен под углом 60 к горизонту на крыше здания, высота которого h=40 м. Начальная скорость мины равна 50 м/с. Требуется написать кинематические уравнения движения и уравнения траектории и начертить эту траекторию с соблюдением масштаба; определить время τ полета мины, максимальную высоту H ее подъема, горизонтальную дальность s полета, скорость v в момент падения мины на землю. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

1.46 Снаряд, выпущенный из орудия под углом 30 к горизонту, дважды был на одной и той же высоте h спустя время t1=10 с и t2=50 с после выстрела. Определить начальную скорость v0 и высоту h.
СМОТРЕТЬ РЕШЕНИЕ

1.47 Пуля пущена с начальной скоростью v0=200 м/с под углом 60 к горизонту. Определить максимальную высоту подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

1.48 Камень брошен с вышки в горизонтальном направлении с начальной скоростью v0=30 м/с. Определить скорость v, тангенциальное и нормальное ускорения камня в конце второй секунды после начала движения.
СМОТРЕТЬ РЕШЕНИЕ

1.49 Тело брошено под углом 30 к горизонту. Найти тангенциальное аτ и нормальное an ускорения в начальный момент движения.
СМОТРЕТЬ РЕШЕНИЕ

1.50 Определить линейную скорость v и центростремительное ускорение aц точек, лежащих на земной поверхности: на экваторе; на широте Москвы φ=56
СМОТРЕТЬ РЕШЕНИЕ

1.51 Линейная скорость v1 точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на 10 см ближе к оси, имеют линейную скорость v2=2 м/с. Определить частоту вращения диска.
СМОТРЕТЬ РЕШЕНИЕ

1.52 Два бумажных диска насажены на общую горизонтальную ось так, что плоскости их параллельны и отстоят на d=30 см друг от друга. Диски вращаются с частотой n=25. Пуля, летевшая параллельно оси на расстоянии r=12 см от нее, пробила оба диска. Пробоины в дисках смещены друг относительно друга на расстояние s=5 см, считая по дуге окружности. Найти среднюю путевую скорость пули в промежутке между дисками и оценить создаваемое силой тяжести смещение пробоин в вертикальном направлении. Сопротивление воздуха не учитывать.
СМОТРЕТЬ РЕШЕНИЕ

1.53 На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали грузик и предоставили ему возможность опускаться. Двигаясь равноускоренно, грузик за время t=3 с опустился на h=1,5 м. Определить угловое ускорение цилиндра, если его радиус r=4 см.
СМОТРЕТЬ РЕШЕНИЕ

1.54 Диск радиусом r=10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением 0,5 рад/с2. Найти тангенциальное, нормальное и полное ускорения точек на окружности диска в конце второй секунды после начала вращения.
СМОТРЕТЬ РЕШЕНИЕ

1.55 Диск радиусом r=20 см вращается согласно уравнению A+Bt+Ct3, где A=3 рад, B=-1 рад/с, С=0,1 рад/с3. Определить тангенциальное нормальное и полное ускорения точек на окружности диска для момента времени t=10 c.
СМОТРЕТЬ РЕШЕНИЕ

1.56 Маховик начал вращаться равноускоренно и за промежуток времени t=10 с достиг частоты вращения n=300. Определить угловое ускорение маховика и число N оборотов, которое он сделал за это время.
СМОТРЕТЬ РЕШЕНИЕ

1.57 Велосипедное колесо вращается с частотой n=5. Под действием сил трения оно остановилось через интервал времени t=1 мин. Определить угловое ускорение и число оборотов, которое сделает колесо за это время.
СМОТРЕТЬ РЕШЕНИЕ

1.58 Колесо автомашины вращается равноускоренно. Сделав 50 полных оборотов, оно изменило частоту вращения от n1=4 до n2=6 с-1. Определить угловое ускорение ε колеса.
СМОТРЕТЬ РЕШЕНИЕ

1.59 Диск вращается с угловым ускорением ε=-2 рад/с2. Сколько оборотов N сделает диск при изменении частоты вращения от n1=240 до n2=90 мин-1? Найти время t, в течение которого это произойдет.
СМОТРЕТЬ РЕШЕНИЕ

1.60 Винт аэросаней вращается с частотой n=360. Скорость v поступательного движения аэросаней равна 54 км/ч. С какой скоростью u движется один из концов винта, если радиус R винта равен 1 м?
СМОТРЕТЬ РЕШЕНИЕ

1.61 На токарном станке протачивается вал диаметром d=60 мм. Продольная подача h резца равна 0,5 мм за один оборот. Какова скорость резания, если за интервал времени t=1 мин протачивается участок вала длиной 12 см
СМОТРЕТЬ РЕШЕНИЕ
2. Динамика материальной точки и тела, движущихся поступательно

1 К концам однородного стержня приложены две противоположно направленные силы F1=40 Н и F2=100 Н. Определить силу натяжения T стержня в поперечном сечении, которое делит стержень на две части в отношении 1:2.
СМОТРЕТЬ РЕШЕНИЕ

2 В лифте на пружинных весах находится тело массой m=10 кг. Лифт движется с ускорением a=2 м/с2. Определить показания весов в двух случаях, когда ускорение лифта направлено вертикально вверх, вертикально вниз
СМОТРЕТЬ РЕШЕНИЕ

3 При падении тела с большой высоты его скорость при установившемся движении достигает 80 м/с. Определить время τ, в течение которого начиная от момента начала падения скорость становится равной 1/2 vуст. Силу сопротивления воздуха принять пропорциональной скорости тела.
СМОТРЕТЬ РЕШЕНИЕ

4 Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом 30 к нормали. Определить импульс, получаемый стенкой.
СМОТРЕТЬ РЕШЕНИЕ

5 На спокойной воде пруда стоит лодка длиной L и массой M перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой m. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

6 Два шара массами m1=2,5 кг и m2=1,5 кг движутся навстречу друг другу со скоростями v1=6 м/с и v2=2 м/с. Определить скорость шаров после удара; кинетические энергии шаров T1 до и T2 после удара; долю кинетической энергии w шаров, превратившейся во внутреннюю энергию. Удар считать прямым, неупругим.
СМОТРЕТЬ РЕШЕНИЕ

7 Шар массой m1, движущийся горизонтально с некоторой скоростью v1, столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой. Какую долю w своей кинетической энергии первый шар передал второму?
СМОТРЕТЬ РЕШЕНИЕ

8 Молот массой m1=200 кг падает на поковку, масса m2 которой вместе с наковальней равна 2500 кг. Скорость молота в момент удара равна 2 м/с. Найти кинетическую энергию T1 молота в момент удара; энергию T2, переданную фундаменту; энергию T, затраченную на деформацию поковки; коэффициент полезного действия КПД удара молота о поковку. Удар молота о поковку рассматривать как неупругий.
СМОТРЕТЬ РЕШЕНИЕ

9 Боек ударная часть свайного молота массой m1=500 кг падает на сваю массой m2=100 кг со скоростью v1=4 м/с. Определить кинетическую энергию T1 бойка в момент удара; энергию T2, затраченную на углубление сваи в грунт; кинетическую энергию T, перешедшую во внутреннюю энергию системы; КПД удара бойка о сваю. Удар бойка о сваю рассматривать как неупругий.
СМОТРЕТЬ РЕШЕНИЕ

2.1 На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 Н, направленная параллельно поверхности стола. Найти ускорение a бруска.
СМОТРЕТЬ РЕШЕНИЕ

2.2 На столе стоит тележка массой m1=4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением a будет двигаться тележка, если к другому концу шнура привязать гирю массой m2=1 кг?
СМОТРЕТЬ РЕШЕНИЕ

2.3 К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массами m1=1,5 кг и m2=3 кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.4 Два бруска массами m1=1 кг и m2=4 кг, соединенные шнуром, лежат на столе. С каким ускорением a будут двигаться бруски, если к одному из них приложить силу F=10 Н, направленную горизонтально? Какова будет сила натяжения шнура, соединяющего бруски, если силу 10 Н приложить к первому бруску, ко второму бруску? Трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.5 На гладком столе лежит брусок массой m=4 кг. К бруску привязаны два шнура, перекинутые через неподвижные блоки, прикрепленные к противоположным краям стола. К концам шнуров подвешены гири, массы которых m1=1 кг и m2=2 кг. Найти ускорение a, с которым движется брусок, и силу натяжения Т каждого из шнуров. Массой блоков и трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.6 Наклонная плоскость, образующая угол 25 с плоскостью горизонта, имеет длину l=2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t=2 c. Определить коэффициент трения тела о плоскость.
СМОТРЕТЬ РЕШЕНИЕ

2.7 Материальная точка массой m=2 кг движется под действием некоторой силы F согласно уравнению x=A+Bt+Ct2+Dt3, где С=1 м/с2, D=-0,2 м/с3. Найти значения этой силы в моменты времени t1=2 с и t2=5 c. В какой момент времени сила равна нулю
СМОТРЕТЬ РЕШЕНИЕ

2.8 Молот массой m=1 т падает с высоты h=2 м на наковальню. Длительность удара t=0,01 c. Определить среднее значение силы удара.
СМОТРЕТЬ РЕШЕНИЕ

2.9 Шайба, пущенная по поверхности льда с начальной скоростью v0=20 м/с, остановилась через t=40 c. Найти коэффициент трения f шайбы о лед.
СМОТРЕТЬ РЕШЕНИЕ

2.10 Материальная точка массой m=1 кг, двигаясь равномерно, описывает четверть окружности радиусом r=1,2 м в течение времени t=2 c. Найти изменение импульса точки.
СМОТРЕТЬ РЕШЕНИЕ

2.11 Тело массой m=5 кг брошено под углом 30 к горизонту с начальной скоростью v0=20 м/с. Пренебрегая сопротивлением воздуха, найти импульс силы F, действующей на тело, за время его полета; изменение импульса тела за время полета.
СМОТРЕТЬ РЕШЕНИЕ

2.12 Шарик массой m=100 г упал с высоты h=2,5 м на горизонтальную плиту, масса которой много больше массы шарика, и отскочил от нее вверх. Считая удар абсолютно упругим, определить импульс, полученный плитой.
СМОТРЕТЬ РЕШЕНИЕ

2.13 Шарик массой m=300 г ударился о стену и отскочил от нее. Определить импульс p1, полученный стеной, если в последний момент перед ударом шарик имел скорость v0=10 м/с, направленную под углом 30 к поверхности стены. Удар считать абсолютно упругим.
СМОТРЕТЬ РЕШЕНИЕ

2.14 Тело массой m=0,2 кг соскальзывает без трения по желобу высотой h=2 м. Начальная скорость v0 шарика равна нулю. Найти изменение импульса шарика и импульс p, полученный желобом при движении тела.
СМОТРЕТЬ РЕШЕНИЕ

2.15 Ракета массой m=1 т, запущенная с поверхности Земли вертикально вверх, поднимается с ускорением a=2g. Скорость струи газов, вырывающихся из сопла, равна 1200 м/с. Найти расход горючего.
СМОТРЕТЬ РЕШЕНИЕ

2.16 Космический корабль имеет массу m=3,5 т. При маневрировании из его двигателей вырывается струя газов со скоростью v=800 м/с; расход горючего 0,2 кг/с. Найти реактивную силу R двигателей и ускорение a, которое она сообщает кораблю.
СМОТРЕТЬ РЕШЕНИЕ

2.17 Вертолет массой m=3,5 т с ротором, диаметр которого равен 18 м, висит в воздухе. С какой скоростью v ротор отбрасывает вертикально вниз струю воздуха? Диаметр струи считать равным диаметру ротора.
СМОТРЕТЬ РЕШЕНИЕ

2.18 Брусок массой m2=5 кг может свободно скользить по горизонтальной поверхности без трения. На нем находится другой брусок массой m1=1 кг. Коэффициент трения соприкасающихся поверхностей брусков f=0,3. Определить максимальное значение силы, приложенной к нижнему бруску, при которой начнется соскальзывание верхнего бруска.
СМОТРЕТЬ РЕШЕНИЕ

2.19 На горизонтальной поверхности находится брусок массой m1=2 кг. Коэффициент трения бруска о поверхность равен 0,2. На бруске находится другой брусок массой m2=8 кг. Коэффициент трения f2 верхнего бруска о нижний равен 0,3. К верхнему бруску приложена сила F. Определить значение силы F1, при котором начнется совместное скольжение брусков по поверхности; значение силы F2, при котором верхний брусок начнет проскальзывать относительно нижнего.
СМОТРЕТЬ РЕШЕНИЕ

2.20 Ракета, масса которой M=6 т, поднимается вертикально вверх. Двигатель ракеты развивает силу тяги F=500 кН. Определить ускорение a ракеты и силу натяжения T троса, свободно свисающего с ракеты, на расстоянии, равном 1/4 его длины от точки прикрепления троса. Масса m троса равна 10 кг. Силой сопротивления воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.21 На плоской горизонтальной поверхности находится обруч, масса которого ничтожно мала. К внутренней части обруча прикреплен груз малых размеров, как это показано на рис. 2.7. Угол α=30. С каким ускорением a необходимо двигать плоскость в направлении, указанном на рисунке, чтобы обруч с грузом не изменил своего положения относительно плоскости? Скольжение обруча по плоскости отсутствует.
СМОТРЕТЬ РЕШЕНИЕ

2.22 Самолет летит в горизонтальном направлении с ускорением a=20 м/с2. Какова перегрузка пассажира, находящегося в самолете
СМОТРЕТЬ РЕШЕНИЕ

2.23 Автоцистерна с керосином движется с ускорением a=0,7 м/с2. Под каким углом к плоскости горизонта расположен уровень керосина в цистерне
СМОТРЕТЬ РЕШЕНИЕ

2.24 Бак в тендере паровоза имеет длину l=4 м. Какова разность уровней воды у переднего и заднего концов бака при движении поезда с ускорением a=0,5 м/с2
СМОТРЕТЬ РЕШЕНИЕ

2.25 Неподвижная труба с площадью S поперечного сечения, равной 10 см2, изогнута под углом 90 и прикреплена к стене. По трубе течет вода, объемный расход которой 50 л/с. Найти давление p струи воды, вызванной изгибом трубы.
СМОТРЕТЬ РЕШЕНИЕ

2.26 Струя воды ударяется о неподвижную плоскость, поставленную под углом 60 к направлению движения струи. Скорость v струи равна 20 м/с, площадь ее поперечного сечения равна 5 см2. Определить силу давления струи на плоскость.
СМОТРЕТЬ РЕШЕНИЕ

2.27 Катер массой m=2 т с двигателем мощностью N=50 кВт развивает максимальную скорость 25 м/с. Определить время t, в течение которого катер после выключения двигателя потеряет половину своей скорости. Принять, что сила сопротивления движению катера изменяется пропорционально квадрату скорости.
СМОТРЕТЬ РЕШЕНИЕ

2.28 Снаряд массой m=10 кг выпущен из зенитного орудия вертикально вверх со скоростью v0=800 м/с. Считая силу сопротивления воздуха пропорциональной скорости, определить время t подъема снаряда до высшей точки. Коэффициент сопротивления k=0,25 кг/с.
СМОТРЕТЬ РЕШЕНИЕ

2.29 С вертолета, неподвижно висящего на некоторой высоте над поверхностью Земли, сброшен груз массой m=100 кг. Считая, что сила сопротивления воздуха изменяется пропорционально скорости, определить, через какой промежуток времени ускорение a груза будет равно половине ускорения свободного падения. Коэффициент сопротивления k=10 кг/с.
СМОТРЕТЬ РЕШЕНИЕ

2.30 Моторная лодка массой m=400 кг начинает двигаться по озеру. Сила тяги F мотора равна 0,2 кН. Считая силу сопротивления пропорциональной скорости, определить скорость лодки через t=20 с после начала ее движения. Коэффициент сопротивления k=20 кг/с.
СМОТРЕТЬ РЕШЕНИЕ

2.31 Катер массой m=2 т трогается с места и в течение времени τ=10 с развивает при движении по спокойной воде скорость v=4 м/с. Определить силу тяги F мотора, считая ее постоянной. Принять силу сопротивления движению пропорциональной скорости; коэффициент сопротивления k=100 кг/с.
СМОТРЕТЬ РЕШЕНИЕ

2.32 Начальная скорость пули равна 800 м/с. При движении в воздухе за время t=0,8 с ее скорость уменьшилась до v=200 м/с. Масса m пули равна 10 г. Считая силу сопротивления воздуха пропорциональной квадрату скорости, определить коэффициент сопротивления k. Действием силы тяжести пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.33 Парашютист, масса которого m=80 кг, совершает затяжной прыжок. Считая, что сила сопротивления воздуха пропорциональна скорости, определить, через какой промежуток времени скорость движения парашютиста будет равна 0,9 от скорости установившегося движения. Коэффициент сопротивления k=10 кг/с. Начальная скорость парашютиста равна нулю.
СМОТРЕТЬ РЕШЕНИЕ

2.34 Шар массой m1=10 кг, движущийся со скоростью v1=4 м/с, сталкивается с шаром массой m2=4 кг, скорость v2 которого равна 12 м/с. Считая удар прямым, неупругим, найти скорость шаров после удара в двух случаях-малый шар нагоняет большой шар, движущийся в том же направлении; шары движутся навстречу друг другу.
СМОТРЕТЬ РЕШЕНИЕ

2.35 В лодке массой m1=240 кг стоит человек массой m2=60 кг. Лодка плывет со скоростью v1=2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью v=4 м/с относительно лодки. Найти скорость движения лодки после прыжка человека в двух случаях: человек прыгает вперед по движению лодки и в сторону, противоположную движению лодки.
СМОТРЕТЬ РЕШЕНИЕ

2.36 На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса человека M=60 кг, масса доски m=20 кг. С какой скоростью u относительно пола будет двигаться тележка, если человек пойдет вдоль доски со скоростью относительно доски v=1 м/с? Массой колес пренебречь. Трение во втулках не учитывать.
СМОТРЕТЬ РЕШЕНИЕ

2.37 В предыдущей задаче найти, на какое расстояние d передвинется тележка, если человек перейдет на другой конец доски; переместится человек относительно пола; переместится центр масс системы тележка человек относительно доски и относительно пола. Длина l доски равна 2 м.
СМОТРЕТЬ РЕШЕНИЕ

2.38 На железнодорожной платформе установлено орудие. Масса платформы с орудием M=15 т. Орудие стреляет вверх под углом 60 к горизонту в направлении пути. С какой скоростью v1 покатится платформа вследствие отдачи, если масса снаряда m=20 кг и он вылетает со скоростью v2=600 м/с?
СМОТРЕТЬ РЕШЕНИЕ

2.39 Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая массой m1=3 кг получила скорость u1=400 м/с в прежнем направлении. Найти скорость u2 второй, большей части после разрыва.
СМОТРЕТЬ РЕШЕНИЕ

2.40 В предыдущей задаче найти, с какой скоростью u2 и под каким углом к горизонту полетит большая часть снаряда, если меньшая полетела вперед под углом 60 к горизонту.
СМОТРЕТЬ РЕШЕНИЕ

2.41 Два конькобежца массами m1=80 кг и m2=50 кг, держась за концы длинного натянутого шнура, неподвижно стоят на льду один против другого. Один из них начинает укорачивать шнур, выбирая его со скоростью v=1 м/с. С какими скоростями u1 и u2 будут двигаться по льду конькобежцы? Трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.42 Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0,4, найти частоту вращения, при которой кубик соскользнет с диска.
СМОТРЕТЬ РЕШЕНИЕ

2.43 Акробат на мотоцикле описывает мертвую петлю радиусом r=4 м. С какой наименьшей скоростью должен проезжать акробат верхнюю точку петли, чтобы не сорваться?
СМОТРЕТЬ РЕШЕНИЕ

2.44 К шнуру подвешена гиря. Гирю отвели в сторону так, что шнур принял горизонтальное положение, и отпустили. Как велика сила натяжения Т шнура в момент, когда гиря проходит положение равновесия? Какой угол с вертикалью составляет шнур в момент, когда сила натяжения шнура равна силе тяжести гири?
СМОТРЕТЬ РЕШЕНИЕ

2.45 Самолет описывает петлю Нестерова радиусом R=200 м. Во сколько раз сила, с которой летчик давит на сиденье в нижней точке, больше силы тяжести P летчика, если скорость самолета v=100 м/с?
СМОТРЕТЬ РЕШЕНИЕ

2.46 Грузик, привязанный к шнуру длиной l=50 см, описывает окружность в горизонтальной плоскости. Какой угол образует шнур с вертикалью, если частота вращения n=1 с-1?
СМОТРЕТЬ РЕШЕНИЕ

2.47 Грузик, привязанный к нити длиной l=1 м, описывает окружность в горизонтальной плоскости. Определить период T обращения, если нить отклонена на угол 60 от вертикали.
СМОТРЕТЬ РЕШЕНИЕ

2.48 При насадке маховика на ось центр тяжести оказался на расстоянии r=0,1 мм от оси вращения. В каких пределах меняется сила давления оси на подшипники, если частота вращения маховика n=10 с-1? Масса m маховика равна 100 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.49 Мотоцикл едет по внутренней поверхности вертикального цилиндра радиусом R=11,2 м. Центр тяжести мотоцикла с человеком расположен на расстоянии l=0,8 м от поверхности цилиндра. Коэффициент трения покрышек о поверхность цилиндра равен 0,6. С какой минимальной скоростью должен ехать мотоциклист? Каков будет при этом угол φ наклона его к плоскости горизонта?
СМОТРЕТЬ РЕШЕНИЕ

2.50 Автомобиль массой m=5 т движется со скоростью v=10 м/с по выпуклому мосту. Определить силу давления автомобиля на мост в его верхней части, если радиус R кривизны моста равен 50 м.
СМОТРЕТЬ РЕШЕНИЕ

2.51 Сосуд с жидкостью вращается с частотой n=2 вокруг вертикальной оси. Поверхность жидкости имеет вид воронки. Чему равен угол наклона поверхности жидкости в точках, лежащих на расстоянии r=5 см от оси?
СМОТРЕТЬ РЕШЕНИЕ

2.52 Автомобиль идет по закруглению шоссе, радиус кривизны которого равен 200 м. Коэффициент трения f колес о покрытие дороги равен 0,1 гололед. При какой скорости v автомобиля начнется его занос
СМОТРЕТЬ РЕШЕНИЕ

2.53 Какую наибольшую скорость может развить велосипедист, проезжая закругление радиусом R=50 м, если коэффициент трения скольжения f между шинами и асфальтом равен 0,3? Каков угол отклонения велосипеда от вертикали, когда велосипедист движется по закруглению?
СМОТРЕТЬ РЕШЕНИЕ

2.54 Самолет массой m=2,5 т летит со скоростью v=400 км/ч. Он совершает в горизонтальной плоскости вираж-полет самолета по дуге окружности с некоторым углом крена. Радиус R траектории самолета равен 500 м. Найти поперечный угол наклона самолета и подъемную силу F крыльев во время полета.
СМОТРЕТЬ РЕШЕНИЕ

2.55 Вал вращается с частотой n=2400. К валу перпендикулярно его длине прикреплен стержень очень малой массы, несущий на концах грузы массой m=1 кг каждый, находящиеся на расстоянии r=0,2 м от оси вала. Найти силу F, растягивающую стержень при вращении вала; момент М силы, которая действовала бы на вал, если бы стержень был наклонен под углом 89 к оси вала.
СМОТРЕТЬ РЕШЕНИЕ

2.56 Тонкое однородное медное кольцо радиусом R=10 см вращается относительно оси, проходящей через центр кольца, с угловой скоростью 10 рад/с. Определить нормальное напряжение, возникающее в кольце в двух случаях когда ось вращения перпендикулярна плоскости кольца и когда лежит в плоскости кольца. Деформацией кольца при вращении пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.57 Под действием постоянной силы вагонетка прошла путь s=5 м и приобрела скорость v=2 м/с. Определить работу А силы, если масса m вагонетки равна 400 кг и коэффициент трения f=0,01.
СМОТРЕТЬ РЕШЕНИЕ

2.58 Вычислить работу, совершаемую при равноускоренном подъеме груза массой m=100 кг на высоту h=4 м за время t=2 c.
СМОТРЕТЬ РЕШЕНИЕ

2.59 Найти работу подъема груза по наклонной плоскости длиной l=2 м, если масса m груза равна 100 кг, угол наклона 30, коэффициент трения f=0,1 и груз движется с ускорением a=1 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

2.60 Вычислить работу A, совершаемую на пути s=12 м равномерно возрастающей силой, если в начале пути сила F1=10 Н, в конце пути F2=46 Н.
СМОТРЕТЬ РЕШЕНИЕ

2.61 Под действием постоянной силы F=400 Н, направленной вертикально вверх, груз массой m=20 кг был поднят на высоту h=15 м. Какой потенциальной энергией П будет обладать поднятый груз? Какую работу А совершит сила F?
СМОТРЕТЬ РЕШЕНИЕ

2.62 Тело массой m=1 кг, брошенное с вышки в горизонтальном направлении со скоростью v0=20 м/с, через 3 с упало на землю. Определить кинетическую энергию T, которую имело тело в момент удара о землю. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.63 Камень брошен вверх под углом 60 к плоскости горизонта. Кинетическая энергия T0 камня в начальный момент времени равна 20 Дж. Определить кинетическую T и потенциальную П энергии камня в высшей точке его траектории. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.64 Насос выбрасывает струю воды диаметром d=2 см со скоростью v=20 м/с. Найти мощность N, необходимую для выбрасывания воды.
СМОТРЕТЬ РЕШЕНИЕ

2.65 Какова мощность воздушного потока сечением S=0,55 м2 при скорости воздуха v=20 м/с и нормальных условиях
СМОТРЕТЬ РЕШЕНИЕ

2.66 Вертолет массой m=3 т висит в воздухе. Определить мощность, развиваемую мотором вертолета в этом положении, при двух значениях диаметра ротора 18 м; 8 м. При расчете принять, что ротор отбрасывает вниз цилиндрическую струю воздуха диаметром, равным диаметру ротора.
СМОТРЕТЬ РЕШЕНИЕ

2.67 Материальная точка массой m=2 кг двигалась под действием некоторой силы, направленной вдоль оси Ох согласно уравнению x=A+Bt+Ct2+Dt3, где В=-2 м/с, С=1 м/с2, D=-0,2 м/с3. Найти мощность, развиваемую силой в момент времени t1=2 с и t2=5 c.
СМОТРЕТЬ РЕШЕНИЕ

2.68 С какой наименьшей высоты h должен начать скатываться акробат на велосипеде не работая ногами, чтобы проехать по дорожке, имеющей форму мертвой петли радиусом R=4 м, и не оторваться от дорожки в верхней точке петли? Трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.69 Камешек скользит с наивысшей точки купола, имеющего форму полусферы. Какую дугу опишет камешек, прежде чем оторвется от поверхности купола? Трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.70 Мотоциклист едет по горизонтальной дороге. Какую наименьшую скорость он должен развить, чтобы, выключив мотор, проехать по треку, имеющему форму мертвой петли радиусом R=4 м? Трением и сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.71 При выстреле из орудия снаряд массой 10 кг получает кинетическую энергию 1,8 МДж. Определить кинетическую энергию T2 ствола орудия вследствие отдачи, если масса m2 ствола орудия равна 600 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.72 Ядро атома распадается на два осколка массами m1=1,6*10-25 кг и m2=2,4*10-25 кг. Определить кинетическую энергию второго осколка, если энергия T1 первого осколка равна 18 нДж.
СМОТРЕТЬ РЕШЕНИЕ

2.73 Конькобежец, стоя на льду, бросил вперед гирю массой m1=5 кг и вследствие отдачи покатился назад со скоростью v2=1 м/с. Масса конькобежца m2=60 кг. Определить работу, совершенную конькобежцем при бросании гири.
СМОТРЕТЬ РЕШЕНИЕ

2.74 Молекула распадается на два атома. Масса одного из атомов в 3 раза больше, чем другого. Пренебрегая начальной кинетической энергий и импульсом молекулы, определить кинетические энергии T1 и T2 атомов, если их суммарная кинетическая энергия T=0,032 нДж.
СМОТРЕТЬ РЕШЕНИЕ

2.75 На рельсах стоит платформа, на которой закреплено орудие без противооткатного устройства так, что ствол его расположен в горизонтальном положении. Из орудия производят выстрел вдоль железнодорожного пути. Масса снаряда равна 10 кг, и его скорость u1=1 км/с. На какое расстояние откатится платформа после выстрела, если коэффициент сопротивления f=0,002?
СМОТРЕТЬ РЕШЕНИЕ

2.76 Пуля массой m=10 г, летевшая со скоростью v=600 м/с, попала в баллистический маятник массой M=5 кг и застряла в нем. На какую высоту, откачнувшись после удара, поднялся маятник?
СМОТРЕТЬ РЕШЕНИЕ

2.77 В баллистический маятник массой M=5 кг попала пуля массой m=10 г и застряла в нем. Найти скорость пули, если маятник, отклонившись после удара, поднялся на высоту h=10 см.
СМОТРЕТЬ РЕШЕНИЕ

2.78 Два груза массами m1=10 и m2=15 кг подвешены на нитях длиной 2 м так, что грузы соприкасаются между собой. Меньший груз был отклонен на угол 60 и выпущен. Определить высоту, на которую поднимутся оба груза после удара. Удар грузов считать неупругим.
СМОТРЕТЬ РЕШЕНИЕ

2.79 Два неупругих шара массами m1=2 и m2=3 кг движутся со скоростями соответственно v1=8 и v2=4 м/с. Определить увеличение внутренней энергии шаров при их столкновении в двух случаях меньший шар нагоняет больший; шары движутся навстречу друг другу.
СМОТРЕТЬ РЕШЕНИЕ

2.80 Шар массой m1, летящий со скоростью v1=5 м/с, ударяет неподвижный шар массой m2. Удар прямой, неупругий. Определить скорость шаров после удара, а также долю w кинетической энергии летящего шара, израсходованной на увеличение внутренней энергии этих шаров. Рассмотреть два случая m1=2 кг, m2=8 кг; m1=8 кг, m2=2 кг.
СМОТРЕТЬ РЕШЕНИЕ

2.81 Шар массой m1=2 кг налетает на покоящийся шар массой m2=8 кг. Импульс движущегося шара равен 10 кг*м/с. Удар шаров прямой, упругий. Определить непосредственно после удара импульсы p1 первого шара и p2 второго шара; изменение импульса первого шара; кинетические энергии первого шара и второго шара; изменение кинетической энергии первого шара; долю кинетической энергии, переданной первым шаром второму
СМОТРЕТЬ РЕШЕНИЕ

2.82 Шар массой m1=6 налетает на другой покоящийся шар массой m2=4 кг. Импульс первого шара равен 5 кг*м/с. Удар шаров прямой, неупругий. Определить непосредственно после удара импульсы первого шара и второго шара; изменение импульса первого шара; кинетические энергии первого шара и T2 второго шара; изменение кинетической энергии первого шара; долю кинетической энергии, переданной первым шаром второму и долю кинетической энергии, оставшейся у первого шара; изменение внутренней энергии шаров; долю кинетической энергии первого шара, перешедшей во внутреннюю энергию шаров.
СМОТРЕТЬ РЕШЕНИЕ

2.83 Молот массой m1=5 кг ударяет небольшой кусок железа, лежащий на наковальне. Масса m2 наковальни равна 100 кг. Массой куска железа пренебречь. Удар неупругий. Определить КПД удара молота при данных условиях.
СМОТРЕТЬ РЕШЕНИЕ

2.84 Боек свайного молота массой m1=500 падает с некоторой высоты на сваю массой m2=100 кг. Найти КПД удара бойка, считая удар неупругим. Изменением потенциальной энергии сваи при углублении ее пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

2.85 Молотком, масса которого m1=1 кг, забивают в стену гвоздь массой m2=75 г. Определить КПД удара молотка при данных условиях.
СМОТРЕТЬ РЕШЕНИЕ

2.86 Шар массой m1=200, движущийся со скоростью v1=10 м/с, ударяет неподвижный шар массой m2=800 г. Удар прямой, абсолютно упругий. Каковы будут скорости u1 и u2 шаров после удара?
СМОТРЕТЬ РЕШЕНИЕ

2.87 Шар массой m=1,8 кг сталкивается с покоящимся шаром большей массы M. В результате прямого упругого удара шар потерял 0,36 своей кинетической энергии T1. Определить массу большего шара.
СМОТРЕТЬ РЕШЕНИЕ

2.88 Из двух соударяющихся абсолютно упругих шаров больший шар покоится. В результате прямого удара меньший шар потерял 3/4 своей кинетической энергии T1. Определить отношение k=M/m масс шаров.
СМОТРЕТЬ РЕШЕНИЕ

2.89 Определить максимальную часть кинетической энергии T1, которую может передать частица массой m1=2*10-22, сталкиваясь упруго с частицей массой m2=6*10-22 г, которая до столкновения покоилась.
СМОТРЕТЬ РЕШЕНИЕ

2.90 Частица массой m1=10-25 обладает импульсом 5*10-20 кг*м/с. Определить, какой максимальный импульс может передать эта частица, сталкиваясь упруго с частицей массой m2=4*10-25 кг, которая до соударения покоилась.
СМОТРЕТЬ РЕШЕНИЕ

2.91 На покоящийся шар налетает со скоростью v1=2 м/с другой шар одинаковой с ним массы. В результате столкновения этот шар изменил направление движения на угол 30. Определить скорости u1 и u2 шаров после удара; угол между вектором скорости второго шара и первоначальным направлением движения первого шара. Удар считать упругим.
СМОТРЕТЬ РЕШЕНИЕ

2.92 Частица массой m1=10-24 имеет кинетическую энергию T1=9 нДж. В результате упругого столкновения с покоящейся частицей массой m2=4*10-24 г она сообщает ей кинетическую энергию T2=5 нДж. Определить угол, на который отклонится частица от своего первоначального направления.
СМОТРЕТЬ РЕШЕНИЕ
3. Динамика вращательного движения твердого тела вокруг неподвижной оси

1 Вычислить момент инерции молекулы NO2 относительно оси z, проходящей через центр масс молекулы перпендикулярно плоскости, содержащей ядра атомов. Межъядерное расстояние d этой молекулы равно 0,118 нм, валентный угол 140
СМОТРЕТЬ РЕШЕНИЕ

2 Физический маятник представляет собой стержень длиной 1 м и массой m1=1 кг с прикрепленным к одному из его концов диском массой m2=0,5 m1. Определить момент инерции Jz такого маятника относительно оси Оz, проходящей через точку O на стержне перпендикулярно плоскости чертежа
СМОТРЕТЬ РЕШЕНИЕ

3 Вал в виде сплошного цилиндра массой m1=10 кг насажен на горизонтальную ось. На цилиндр намотан шнур, к свободному концу которого подвешена гиря массой m2=2 кг. С каким ускорением a будет опускаться гиря, если ее предоставить самой себе?
СМОТРЕТЬ РЕШЕНИЕ

4 Через блок в виде диска, имеющий массу m=80 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m1=100 г и m2=200 г. С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

5 Маховик в виде диска массой m=50 кг и радиусом 20 см был раскручен до частоты вращения 480 мин-1 и затем предоставлен самому себе. Вследствие трения маховик остановился. Найти момент сил трения, считая его постоянным для двух случаев-маховик остановился через t=50 c; маховик до полной остановки сделал N=200 оборотов.
СМОТРЕТЬ РЕШЕНИЕ

6 Платформа в виде диска радиусом R=1,5 м и массой m1=180 кг вращается по инерции около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы
СМОТРЕТЬ РЕШЕНИЕ

7 Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n1=0,5 с-1. Момент инерции тела человека относительно оси вращения равен 1,6 кг*м2. В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями l1= 1,6 м. Определить частоту вращения n2 скамьи с человеком, когда он опустит руки и расстояние l2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

8 Стержень длиной l=1,5 м и массой M=10 кг может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня. В середину стержня ударяет пуля массой m=10 г, летящая в горизонтальном направлении со скоростью v0=500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?
СМОТРЕТЬ РЕШЕНИЕ

3.1 Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см.
СМОТРЕТЬ РЕШЕНИЕ

3.2 Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции системы относительно оси, перпендикулярной стержню и проходящей через центр масс.
СМОТРЕТЬ РЕШЕНИЕ

3.3 Два шара массами m и 2m, m=10 г закреплены на тонком невесомом стержне длиной l=40 см так, как это указано на рис. 3.7. Определить моменты инерции J системы относительно оси, перпендикулярной стержню и проходящей через его конец в этих двух случаях. Размерами шаров пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3.4 Три маленьких шарика массой m=10 г каждый расположены в вершинах равностороннего треугольника со стороной a=20 см и скреплены между собой. Определить момент инерции системы относительно оси перпендикулярной плоскости треугольника и проходящей через центр описанной окружности; лежащей в плоскости треугольника и проходящей через центр описанной окружности и одну из вершин треугольника. Массой стержней, соединяющих шары, пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3.5 Определить моменты инерции Jx, Jу, Jz трехатомных молекул типа АВ2 относительно осей x, y, z, проходящих через центр инерции С молекулы (ось z перпендикулярна плоскости ху). Межъядерное расстояние AB обозначено d, валентный угол α. Вычисления выполнить для следующих молекул H2O(d=0,097 нм, α=104°30; SO2(d=0,145 нм, α=124)
СМОТРЕТЬ РЕШЕНИЕ

3.6 Определить момент инерции J тонкого однородного стержня длиной l=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через его конец; его середину; точку, отстоящую от конца стержня на 1/3 его длины.
СМОТРЕТЬ РЕШЕНИЕ

3.7 Определить момент инерции тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на a=20 см от одного из его концов.
СМОТРЕТЬ РЕШЕНИЕ

3.8 Вычислить момент инерции J проволочного прямоугольника со сторонами a=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линейной плотностью τ=0,1 кг/м.
СМОТРЕТЬ РЕШЕНИЕ

3.9 Два однородных тонких стержня-AB длиной l1=40 см и массой m1=900 г и CD длиной l2=40 см и массой m2=400 г скреплены под прямым углом. Определить момент инерции J системы стержней относительно оси OO, проходящей через конец стержня AB параллельно стержню CD.
СМОТРЕТЬ РЕШЕНИЕ

3.10 Решить предыдущую задачу для случая, когда ось OO проходит через точку A перпендикулярно плоскости чертежа.
СМОТРЕТЬ РЕШЕНИЕ

3.11 Определить момент инерции J проволочного равностороннего треугольника со стороной a=10 см относительно оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине; оси, совпадающей с одной из сторон треугольника. Масса m треугольника равна 12 г и равномерно распределена по длине проволоки.
СМОТРЕТЬ РЕШЕНИЕ

3.12 На концах тонкого однородного стержня длиной l и массой Зm прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стержню и проходящей через точку O, лежащую на оси стержня. Вычисления выполнить для случаев изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.
СМОТРЕТЬ РЕШЕНИЕ

3.13 Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.
СМОТРЕТЬ РЕШЕНИЕ

3.14 Определить момент инерции J кольца массой m=50 г и радиусом R=10 см относительно оси, касательной к кольцу.
СМОТРЕТЬ РЕШЕНИЕ

3.15 Диаметр диска d=20 см, масса m=800 г. Определить момент инерции диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.
СМОТРЕТЬ РЕШЕНИЕ

3.16 В однородном диске массой m=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска. Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.
СМОТРЕТЬ РЕШЕНИЕ

3.17 Найти момент инерции J плоской однородной прямоугольной пластины массой m=800 г относительно оси, совпадающей с одной из ее сторон, если длина a другой стороны равна 40 см.
СМОТРЕТЬ РЕШЕНИЕ

3.18 Определить момент инерции J тонкой плоской пластины со сторонами a=10 см и b=20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью 1,2 кг/м2.
СМОТРЕТЬ РЕШЕНИЕ

3.19 Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку O на стержне. Стержень отклонили от вертикали на угол α и отпустили. Определить для начального момента времени угловое ε и тангенциальное aτ ускорения точки В на стержне. Вычисления произвести для следующих случаев a=0, b=2/3 l, α=π/2; a=l/3, b=l, α=π/3; a=l/4, b=l/2, α=2/3 π
СМОТРЕТЬ РЕШЕНИЕ

3.20 Однородный диск радиусом R=10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости диска и проходящей через точку O на нем. Диск отклонили на угол α и отпустили. Определить для начального момента времени угловое и тангенциальное ускорения точки B, находящейся на диске. Вычисления выполнить для следующих случаев a=R, b=R/2, α=π/2; a=R/2, b=R, α=π/6; a=2/3 R, b=2/3 R, α=2/3 π
СМОТРЕТЬ РЕШЕНИЕ

3.21 Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением 3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент M.
СМОТРЕТЬ РЕШЕНИЕ

3.22 На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой m=0,4 кг. Опускаясь равноускоренно, груз прошел путь s=1,8 м за время t=3 c. Определить момент инерции маховика. Массу шкива считать пренебрежимо малой.
СМОТРЕТЬ РЕШЕНИЕ

3.23 Вал массой m=100 кг и радиусом R=5 см вращался с частотой n=8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40 Н, под действием которой вал остановился через t=10 c. Определить коэффициент трения
СМОТРЕТЬ РЕШЕНИЕ

3.24 На цилиндр намотана тонкая гибкая нерастяжимая лента, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение a оси цилиндра, если цилиндр сплошной; полый тонкостенный.
СМОТРЕТЬ РЕШЕНИЕ

3.25 Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1= 100 г и m2=110 г. С каким ускорением a будут двигаться грузики, если масса m блока равна 400 г? Трение при вращении блока ничтожно мало.
СМОТРЕТЬ РЕШЕНИЕ

3.26 Два тела массами m1=0,25 кг и m2=0,15 кг связаны тонкой нитью, переброшенной через блок. Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой m1. С каким ускорением a движутся тела и каковы силы T1 и T2 натяжения нити по обе стороны от блока? Коэффициент трения тела о поверхность стола равен 0,2. Масса m блока равна 0,1 кг и ее можно считать равномерно распределенной по ободу. Массой нити и трением в подшипниках оси блока пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3.27 Через неподвижный блок массой m=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1=0,3 кг и m2=0,5 кг. Определить силы натяжения T1 и T2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу.
СМОТРЕТЬ РЕШЕНИЕ

3.28 Шар массой m=10 кг и радиусом R=20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид φ=A+Bt2+Сt3, где В=4 рад/с2, С=-1 рад/с3. Найти закон изменения момента сил, действующих на шар. Определить момент сил M в момент времени t=2 c.
СМОТРЕТЬ РЕШЕНИЕ

3.29 Однородный тонкий стержень массой m1=0,2 кг и длиной 1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку O. В точку A на стержне попадает пластилиновый шарик, летящий горизонтально перпендикулярно оси z со скоростью v=10 м/с и прилипает к стержню. Масса m2 шарика равна 10 г. Определить угловую скорость стержня и линейную скорость u нижнего конца стержня в начальный момент времени. Вычисления выполнить для следующих значений расстояния между точками A и О l/2; l/3; l/4
СМОТРЕТЬ РЕШЕНИЕ

3.30 Однородный диск массой m1=0,2 кг и радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку C. В точку A на образующей диска попадает пластилиновый шарик, летящий горизонтально перпендикулярно оси z со скоростью v=10 м/с, и прилипает к его поверхности. Масса шарика равна 10 г. Определить угловую скорость диска и линейную скорость u точки O на диске в начальный момент времени. Вычисления выполнить для следующих значений а и b:a=b=R; a=R/2, b=R; a=2R/3, b=R/2; a=R/3, b=2R/3.
СМОТРЕТЬ РЕШЕНИЕ

3.31 Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг, летящий в горизонтальном направлении со скоростью 20 м/с. Траектория мяча проходит на расстоянии r=0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг*м2?
СМОТРЕТЬ РЕШЕНИЕ

3.32 Маховик, имеющий вид диска радиусом R=40 см и массой m1=48 кг, может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой m2=0,2 кг. Груз был приподнят и затем опущен. Упав свободно с высоты h=2 м, груз натянул нить и благодаря этому привел маховик во вращение. Какую угловую скорость груз сообщил при этом маховику?
СМОТРЕТЬ РЕШЕНИЕ

3.33 На краю горизонтальной платформы, имеющей форму диска радиусом R=2 м, стоит человек массой m1=80 кг. Масса m2 платформы равна 240 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью будет вращаться платформа, если человек будет идти вдоль ее края со скоростью v=2 м/с относительно платформы.
СМОТРЕТЬ РЕШЕНИЕ

3.34 Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой m1=60 кг. На какой угол повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса m2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки.
СМОТРЕТЬ РЕШЕНИЕ

3.35 Платформа в виде диска радиусом R=1 м вращается по инерции с частотой 6 мин-1. На краю платформы стоит человек, масса m которого равна 80 кг. С какой частотой n будет вращаться платформа, если человек перейдет в ее центр? Момент инерции J платформы равен 120 кг*м2. Момент инерции человека рассчитывать как для материальной точки.
СМОТРЕТЬ РЕШЕНИЕ

3.36 В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой m=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n1=1 с-1. С какой частотой n2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг*м2.
СМОТРЕТЬ РЕШЕНИЕ

3.37 Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n=10 с-1. Радиус колеса равен 20 см, его масса m=3 кг. Определить частоту вращения n2 скамьи, если человек повернет стержень на угол 180? Суммарный момент инерции J человека и скамьи равен 6 кг*м2. Массу колеса можно считать равномерно распределенной по ободу.
СМОТРЕТЬ РЕШЕНИЕ

3.38 Шарик массой m=100 г, привязанный к концу нити длиной 1 м, вращается, опираясь на горизонтальную плоскость, с частотой n1=1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l2=0,5 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу A совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3.39 Маховик вращается по закону, выражаемому уравнением A+Вt+Сt2, где A=2 рад, В=32 рад/с, С=-4 рад/с2. Найти среднюю мощность, развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J=100 кг*м2.
СМОТРЕТЬ РЕШЕНИЕ

3.40 Маховик вращается по закону, выражаемому уравнением φ=A+Вt+Сt2, где A=2 рад, В=16 рад/с, С=-2 рад/с2. Момент инерции маховика равен 50 кг*м2. Найти законы, по которым меняются вращающий момент и мощность. Чему равна мощность в момент времени t=3 с?
СМОТРЕТЬ РЕШЕНИЕ

3.41 Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент, если мотор развивает мощность N=500 Вт.
СМОТРЕТЬ РЕШЕНИЕ

3.42 Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой n=240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения T2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.
СМОТРЕТЬ РЕШЕНИЕ

3.43 Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз P. Найти мощность N мотора, если мотор вращается с частотой n=24 с-1, масса m груза равна 1 кг и показание динамометра F=24 Н.
СМОТРЕТЬ РЕШЕНИЕ

3.44 Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу нужно совершить, чтобы сообщить маховику частоту n=10 с-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус?
СМОТРЕТЬ РЕШЕНИЕ

3.45 Кинетическая энергия T вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент M силы торможения.
СМОТРЕТЬ РЕШЕНИЕ

3.46 Маховик, момент инерции которого равен 40 кг*м2, начал вращаться равноускоренно из состояния покоя под действием момента силы M=20 Н*м. Вращение продолжалось в течение t=10 c. Определить кинетическую энергию T, приобретенную маховиком.
СМОТРЕТЬ РЕШЕНИЕ

3.47 Пуля массой m=10 г летит со скоростью v=800 м/с, вращаясь около продольной оси с частотой n=3000 с-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию T пули.
СМОТРЕТЬ РЕШЕНИЕ

3.48 Сплошной цилиндр массой m=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость оси цилиндра равна 1 м/с. Определить полную кинетическую энергию T цилиндра.
СМОТРЕТЬ РЕШЕНИЕ

3.49 Обруч и сплошной цилиндр, имеющие одинаковую массу m=2 кг, катятся без скольжения с одинаковой скоростью v=5 м/с. Найти кинетические энергии T1 и T2 этих тел.
СМОТРЕТЬ РЕШЕНИЕ

3.50 Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия T шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара.
СМОТРЕТЬ РЕШЕНИЕ

3.51 Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=1 м.
СМОТРЕТЬ РЕШЕНИЕ

3.52 Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см?
СМОТРЕТЬ РЕШЕНИЕ

3.53 Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол 60 от положения равновесия и отпустили. Определить линейную скорость v нижнего конца стержня в момент прохождения через положение равновесия.
СМОТРЕТЬ РЕШЕНИЕ

3.54 Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку O на стержне. Стержень отклонили от положения равновесия на угол α и отпустили. Определить угловую скорость стержня и линейную скорость точки B на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: a=0, b=l/2, α=π/3; a=l/3, b=2l/3, α=π/2; a=l/4, b=l, α=2π/3
СМОТРЕТЬ РЕШЕНИЕ

3.55 Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую и линейную v скорости будет иметь в конце падения середина карандаша? верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
СМОТРЕТЬ РЕШЕНИЕ

3.56 Однородный диск радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку O. Определить угловую и линейную v скорости точки В на диске в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев a=b=R, α=π/2; a=R/2, b=0, α=π/3; a=2R/3, b=2R/3, α=5π/6; a=R/3, b=R, α=2π/3.
СМОТРЕТЬ РЕШЕНИЕ
4. Силы в механике

Условия задач и ссылки на решения по данной теме:
1 Определить вторую космическую скорость v2 ракеты, запущенной с поверхности Земли
СМОТРЕТЬ РЕШЕНИЕ

2 Ракета установлена на поверхности Земли для запуска в вертикальном направлении. При какой минимальной скорости, сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу Земли 6,37*106 м? Силами, кроме силы гравитационного взаимодействия ракеты и Земли, пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3 Найти выражение для потенциальной энергии П гравитационного взаимодействия Земли и тела массой m, находящегося на расстоянии r от центра Земли за пределами ее поверхности. Построить график П®.
СМОТРЕТЬ РЕШЕНИЕ

4 В гравитационном поле Земли тело массой m перемещается из точки 1 в точку 2. Определить скорость v2 тела в точке 2, если в точке 1 его скорость v1=√(gR)=7,9 км/с. Ускорение свободного падения g считать известным.
СМОТРЕТЬ РЕШЕНИЕ

5 Вычислить работу A12 сил гравитационного поля Земли при перемещении тела массой m=10 кг из точки 1 в точку 2. Радиус R Земли и ускорение g свободного падения вблизи поверхности Земли считать известными.
СМОТРЕТЬ РЕШЕНИЕ

6 Верхний конец стального стержня длиной 5 м с площадью поперечного сечения 4 см2 закреплен неподвижно, к нижнему подвешен груз массой m=2*10^3 кг. Определить нормальное напряжение материала стержня; абсолютное x и относительное ε удлинения стержня; потенциальную энергию П растянутого стержня.
СМОТРЕТЬ РЕШЕНИЕ

7 Из пружинного пистолета был произведен выстрел вертикально вверх. Определить высоту h, на которую поднимается пуля массой m=20 г, если пружина жесткостью k=196 Н/м была сжата перед выстрелом на x=10 см. Массой пружины пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

4.1 Центры масс двух одинаковых однородных шаров находятся на расстоянии r=1 м друг от друга. Масса m каждого шара равна 1 кг. Определить силу гравитационного взаимодействия шаров.
СМОТРЕТЬ РЕШЕНИЕ

4.2 Как велика сила взаимного притяжения двух космических кораблей массой m=10 т каждый, если они сблизятся до расстояния r=100 м
СМОТРЕТЬ РЕШЕНИЕ

4.3 Определить силу взаимного притяжения двух соприкасающихся железных шаров диаметром d=20 см каждый.
СМОТРЕТЬ РЕШЕНИЕ

4.4 На какой высоте h над поверхностью Земли напряженность gh гравитационного поля равна 1 Н/кг? Радиус Земли считать известным.
СМОТРЕТЬ РЕШЕНИЕ

4.5 Ракета, пущенная вертикально вверх, поднялась на высоту h=3200 км и начала падать. Какой путь s пройдет ракета за первую секунду своего падения?
СМОТРЕТЬ РЕШЕНИЕ

4.6 Радиус планеты Марс равен 3,4 Мм, ее масса M=6,4*10^23 кг. Определить напряженность g гравитационного поля на поверхности Марса.
СМОТРЕТЬ РЕШЕНИЕ

4.7 Радиус Земли в 3,66 раза больше радиуса Луны; средняя плотность Земли в k=1,66 раза больше средней плотности Луны. Определить ускорение свободного падения на поверхности Луны, если на поверхности Земли ускорение свободного падения g считать известным.
СМОТРЕТЬ РЕШЕНИЕ

4.8 Радиус R малой планеты равен 250 км, средняя плотность 3 г/см3. Определить ускорение свободного падения g на поверхности планеты.
СМОТРЕТЬ РЕШЕНИЕ

4.9 Масса Земли в n=81,6 раза больше массы Луны. Расстояние l между центрами масс Земли и Луны равно 60,3R (радиус Земли). На каком расстоянии r в единицах R от центра Земли находится точка, в которой суммарная напряженность гравитационного поля Земли и Луны равна нулю?
СМОТРЕТЬ РЕШЕНИЕ

4.10 Искусственный спутник обращается вокруг Земли по окружности на высоте h=3,6 Мм. Определить линейную скорость спутника. Радиус Земли и ускорение свободного падения g на поверхности Земли считать известными.
СМОТРЕТЬ РЕШЕНИЕ

4.11 Период вращения искусственного спутника Земли равен 2 ч. Считая орбиту спутника круговой, найти, на какой высоте h над поверхностью Земли движется спутник.
СМОТРЕТЬ РЕШЕНИЕ

4.12 Стационарный искусственный спутник движется по окружности в плоскости земного экватора, оставаясь все время над одним и тем же пунктом земной поверхности. Определить угловую скорость ω спутника и радиус R его орбиты.
СМОТРЕТЬ РЕШЕНИЕ

4.13 Планета Нептун в k=30 раз дальше от Солнца, чем Земля. Определить период T обращения в годах Нептуна вокруг Солнца.
СМОТРЕТЬ РЕШЕНИЕ

4.14 Луна движется вокруг Земли со скоростью v1=1,02 км/с. Среднее расстояние Луны от Земли равно 60,3 R (радиус Земли). Определить по этим данным, с какой скоростью v2 должен двигаться искусственный спутник, вращающийся вокруг Земли на незначительной высоте над ее поверхностью.
СМОТРЕТЬ РЕШЕНИЕ

4.15 Зная среднюю скорость v1 движения Земли вокруг Солнца 30 км/с, определить, с какой средней скоростью v2 движется малая планета, радиус орбиты которой в n=4 раза больше радиуса орбиты Земли.
СМОТРЕТЬ РЕШЕНИЕ

4.16 Советская космическая ракета, ставшая первой искусственной планетой, обращается вокруг Солнца по эллипсу. Наименьшее расстояние rmin ракеты от Солнца равно 0,97, наибольшее расстояние rmax равно 1,31 a. е. среднего расстояния Земли от Солнца. Определить период T вращения в годах искусственной планеты.
СМОТРЕТЬ РЕШЕНИЕ

4.17 Космическая ракета движется вокруг Солнца по орбите, почти совпадающей с орбитой Земли. При включении тормозного устройства ракета быстро теряет скорость и начинает падать на Солнце. Определить время t, в течение которого будет падать ракета. Указание. Принять, что, падая на Солнце, ракета движется по эллипсу, большая ось которого очень мало отличается от радиуса орбиты Земли, а эксцентриситет от единицы. Период обращения по эллипсу не зависит от эксцентриситета.
СМОТРЕТЬ РЕШЕНИЕ

4.18 Ракета, запущенная с Земли на Марс, летит, двигаясь вокруг Солнца по эллиптической орбите. Среднее расстояние r планеты Марс от Солнца равно 1,5 a. е. В течение какого времени t будет лететь ракета до встречи с Марсом?
СМОТРЕТЬ РЕШЕНИЕ

4.19 Искусственный спутник движется вокруг Земли по эллипсу с эксцентриситетом 0,5. Во сколько раз линейная скорость спутника в перигее-ближайшая к центру Земли точка орбиты спутника-больше, чем в апогее-наиболее удаленная точка орбиты
СМОТРЕТЬ РЕШЕНИЕ

4.20 Комета движется вокруг Солнца по эллипсу с эксцентриситетом 0,6. Во сколько раз линейная скорость кометы в ближайшей к Солнцу точке орбиты больше, чем в наиболее удаленной
СМОТРЕТЬ РЕШЕНИЕ

4.21 Ближайший спутник Марса находится на расстоянии r=9,4 Мм от центра планеты и движется вокруг нее со скоростью v=2,1 км/с. Определить массу M Марса.
СМОТРЕТЬ РЕШЕНИЕ

4.22 Определить массу Земли по среднему расстоянию r от центра Луны до центра Земли и периоду T обращения Луны вокруг Земли,T и r считать известными
СМОТРЕТЬ РЕШЕНИЕ

4.23 Один из спутников планеты Сатурн находится приблизительно на таком же расстоянии r от планеты, как Луна от Земли, но период T его обращения вокруг планеты почти в n=10 раз меньше, чем у Луны. Определить отношение масс Сатурна и Земли.
СМОТРЕТЬ РЕШЕНИЕ

4.24 Найти зависимость ускорения свободного падения g от расстояния r, отсчитанного от центра планеты, плотность которой можно считать для всех точек одинаковой. Построить график зависимости g ®. Радиус планеты считать известным.
СМОТРЕТЬ РЕШЕНИЕ

4.25 Тело массой m=1 кг находится на поверхности Земли. Определить изменение силы тяжести для двух случаев-при подъеме тела на высоту h=5 км; при опускании тела в шахту на глубину h=5 км. Землю считать однородным шаром радиусом R=6,37 Мм и плотностью 5,5 г/см3.
СМОТРЕТЬ РЕШЕНИЕ

4.26 Определить работу, которую совершат силы гравитационного поля Земли, если тело массой m=1 кг упадет на поверхность Земли с высоты h, равной радиусу Земли; из бесконечности. Радиус Земли и ускорение свободного падения g на ее поверхности считать известными.
СМОТРЕТЬ РЕШЕНИЕ

4.27 На какую высоту h над поверхностью Земли поднимется ракета, пущенная вертикально вверх, если начальная скорость v ракеты равна первой космической скорости?
СМОТРЕТЬ РЕШЕНИЕ

4.28 Определить значения потенциала гравитационного поля на поверхностях Земли и Солнца
СМОТРЕТЬ РЕШЕНИЕ

4.29 Вычислить значения первой круговой и второй параболической космических скоростей вблизи поверхности Луны
СМОТРЕТЬ РЕШЕНИЕ

4.30 Найти первую и вторую космические скорости вблизи поверхности Солнца.
СМОТРЕТЬ РЕШЕНИЕ

4.31 Радиус R малой планеты равен 100 км, средняя плотность вещества планеты равна 3 г/см3. Определить параболическую скорость v2 у поверхности этой планеты.
СМОТРЕТЬ РЕШЕНИЕ

4.32 Какова будет скорость ракеты на высоте, равной радиусу Земли, если ракета пущена с Земли с начальной скоростью v0=10 км/с? Сопротивление воздуха не учитывать. Радиус R Земли и ускорение свободного падения g на ее поверхности считать известными.
СМОТРЕТЬ РЕШЕНИЕ

4.33 Ракета пущена с Земли с начальной скоростью v0=15 км/с. К какому пределу будет стремиться скорость ракеты, если расстояние ракеты от Земли бесконечно увеличивается? Сопротивление воздуха и притяжение других небесных тел, кроме Земли, не учитывать.
СМОТРЕТЬ РЕШЕНИЕ

4.34 Метеорит падает на Солнце с очень большого расстояния, которое практически можно считать бесконечно большим. Начальная скорость метеорита пренебрежимо мала. Какую скорость будет иметь метеорит в момент, когда его расстояние от Солнца равно среднему расстоянию Земли от Солнца?
СМОТРЕТЬ РЕШЕНИЕ

4.35 Комета огибает Солнце, двигаясь по орбите, которую можно считать параболической. С какой скоростью v движется комета, когда она проходит через перигей-ближайшую к Солнцу точку своей орбиты, если расстояние r кометы от Солнца в этот момент равно 50 Гм?
СМОТРЕТЬ РЕШЕНИЕ

4.36 На высоте h=2,6 Мм над поверхностью Земли космической ракете была сообщена скорость v=10 км/с, направленная перпендикулярно линии, соединяющей центр Земли с ракетой. По какой орбите относительно Земли будет двигаться ракета? Определить вид конического сечения.
СМОТРЕТЬ РЕШЕНИЕ

4.37 К проволоке диаметром d=2 мм подвешен груз массой m=1 кг. Определить напряжение, возникшее в проволоке.
СМОТРЕТЬ РЕШЕНИЕ

4.38 Верхний конец свинцовой проволоки диаметром d=2 см и длиной l=60 м закреплен неподвижно. К нижнему концу подвешен груз массой m=100 кг. Найти напряжение материала у нижнего конца; на середине длины; у верхнего конца проволоки
СМОТРЕТЬ РЕШЕНИЕ

4.39 Какой наибольший груз может выдержать стальная проволока диаметром d=1 мм, не выходя за предел упругости 294 МПа? Какую долю первоначальной длины составляет удлинение проволоки при этом грузе?
СМОТРЕТЬ РЕШЕНИЕ

4.40 Свинцовая проволока подвешена в вертикальном положении за верхний конец. Какую наибольшую длину может иметь проволока, не обрываясь под действием силы тяжести? Предел прочности σпр свинца равен 12,3 МПа.
СМОТРЕТЬ РЕШЕНИЕ

4.41 Гиря массой m=10 кг, привязанная к проволоке, вращается с частотой n=2 с-1 вокруг вертикальной оси, проходящей через конец проволоки, скользя при этом без трения по горизонтальной поверхности. Длина проволоки равна 1,2 м, площадь ее поперечного сечения равна 2 мм2. Найти напряжение σ металла проволоки. Массой ее пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

4.42 Однородный стержень длиной 1,2 м, площадью поперечного сечения S=2 см2 и массой m=10 кг вращается с частотой n=2 с-1 вокруг вертикальной оси, проходящей через конец стержня, скользя при этом без трения по горизонтальной поверхности. Найти наибольшее напряжение материала стержня при данной частоте вращения
СМОТРЕТЬ РЕШЕНИЕ

4.43 К вертикальной проволоке длиной l=5 м и площадью поперечного сечения S=2 мм2 подвешен груз массой m=5,1 кг. В результате проволока удлинилась на x=0,6 мм. Найти модуль Юнга материала проволоки.
СМОТРЕТЬ РЕШЕНИЕ

4.44 К стальному стержню длиной l=3 м и диаметром d=2 см подвешен груз массой m=2,5*10^3 кг. Определить напряжение в стержне, относительное и абсолютное удлинения стержня.
СМОТРЕТЬ РЕШЕНИЕ

4.45 Проволока длиной 2 м и диаметром d=1 мм натянута практически горизонтально. Когда к середине проволоки подвесили груз массой m=1 кг, проволока растянулась настолько, что точка подвеса опустилась на h=4 см. Определить модуль Юнга материала проволоки.
СМОТРЕТЬ РЕШЕНИЕ

4.46 Две пружины жесткостью k1=0,3 кН/м и k2=0,8 кН/м соединены последовательно. Определить абсолютную деформацию первой пружины, если вторая деформирована на x2=1,5 см.
СМОТРЕТЬ РЕШЕНИЕ

4.47 Определить жесткость k системы двух пружин при последовательном и параллельном их соединении. Жесткость пружин k1=2 кН/м и k2=6 кН/м.
СМОТРЕТЬ РЕШЕНИЕ

4.48 Нижнее основание железной тумбы, имеющей форму цилиндра диаметром d=20 см и высотой h=20 см, закреплено неподвижно. На верхнее основание тумбы действует сила F=20 кН. Найти тангенциальное напряжение в материале тумбы; относительную деформацию, угол сдвига; смещение х верхнего основания тумбы
СМОТРЕТЬ РЕШЕНИЕ

4.49 Тонкий стержень одним концом закреплен, к другому концу приложен момент силы M=1 кН*м. Определить угол закручивания стержня, если постоянная кручения С=120 кН*м/рад.
СМОТРЕТЬ РЕШЕНИЕ

4.50 Тонкая однородная металлическая лента закреплена верхним концом. К нижнему концу приложен момент силы M=1 мН*м. Угол закручивания ленты равен 10°. Определить постоянную кручения C.
СМОТРЕТЬ РЕШЕНИЕ

4.51 Какую работу нужно совершить, чтобы растянуть на x=1 мм стальной стержень длиной l=1 м и площадью S поперечного сечения, равной 1 см2?
СМОТРЕТЬ РЕШЕНИЕ

4.52 Для сжатия пружины на x1=1 см нужно приложить силу F=10 Н. Какую работу нужно совершить, чтобы сжать пружину на x2=10 см, если сила пропорциональна сжатию?
СМОТРЕТЬ РЕШЕНИЕ

4.53 Пружина жесткостью k=10 кН/м сжата силой F=200 Н. Определить работу А внешней силы, дополнительно сжимающей эту пружину еще на x=1 см.
СМОТРЕТЬ РЕШЕНИЕ

4.54 Пружина жесткостью k=1 кН/м была сжата на x1=4 см. Какую нужно совершить работу, чтобы сжатие пружины увеличить до x2=18 см?
СМОТРЕТЬ РЕШЕНИЕ

4.55 Гиря, положенная на верхний конец спиральной пружины, поставленной на подставке, сжимает ее на x=2 мм. На сколько сожмет пружину та же гиря, упавшая на конец пружины с высоты h=5 см?
СМОТРЕТЬ РЕШЕНИЕ

4.56 Пуля массой m1=10 г вылетает со скоростью v=300 м/с из дула автоматического пистолета, масса m2 затвора которого равна 200 г. Затвор пистолета прижимается к стволу пружиной жесткостью k=25 кН/м. На какое расстояние отойдет затвор после выстрела? Считать пистолет жестко закрепленным.
СМОТРЕТЬ РЕШЕНИЕ

4.57 Две пружины с жесткостями k1=0,3 кН/м и k2=0,5 кН/м скреплены последовательно и растянуты так, что абсолютная деформация x2 второй пружины равна 3 см. Вычислить работу растяжения пружин.
СМОТРЕТЬ РЕШЕНИЕ

4.58 Пружина жесткостью k1=100 кН/м была растянута на x1=4 см. Уменьшая приложенную силу, пружине дают возможность вернуться в первоначальное состояние нерастянутое. Затем сжимают пружину на x2=6 см. Определить работу A, совершенную при этом внешней силой.
СМОТРЕТЬ РЕШЕНИЕ

4.59 Стальной стержень массой m=3,9 кг растянут на 0,001 своей первоначальной длины. Найти потенциальную энергию П растянутого стержня.
СМОТРЕТЬ РЕШЕНИЕ

4.60 Стержень из стали длиной l=2 м и площадью поперечного сечения S=2 см2 растягивается некоторой силой, причем удлинение x равно 0,4 см. Вычислить потенциальную энергию П растянутого стержня и объемную плотность w энергии.
СМОТРЕТЬ РЕШЕНИЕ

4.61 Стальной стержень длиной 2 м и площадью поперечного сечения S=2 см2 растягивается силой F=10 кН. Найти потенциальную энергию П растянутого стержня и объемную плотность энергии.
СМОТРЕТЬ РЕШЕНИЕ

4.62 Две пружины, жесткости которых k1=1 кН/м и k2=3 кН/м, скреплены параллельно. Определить потенциальную энергию П данной системы при абсолютной деформации x=5 см.
СМОТРЕТЬ РЕШЕНИЕ

4.63 С какой скоростью вылетит из пружинного пистолета шарик массой m=10 г, если пружина была сжата на x=5 см. Жесткость k пружины равна 200 Н/м
СМОТРЕТЬ РЕШЕНИЕ

4.64 В пружинном ружье пружина сжата на x1=20 см. При взводе ее сжали еще на x2=30 см. С какой скоростью вылетит из ружья стрела массой m=50 г, если жесткость k пружины равна 120 Н/м?
СМОТРЕТЬ РЕШЕНИЕ

4.65 Вагон массой m=12 т двигался со скоростью v=1 м/с. Налетев на пружинный буфер, он остановился, сжав пружину буфера на x=10 см. Найти жесткость пружины.
СМОТРЕТЬ РЕШЕНИЕ

4.66 Стальной стержень растянут так, что напряжение в материале стержня 300 МПа. Найти объемную плотность потенциальной энергии растянутого стержня.
СМОТРЕТЬ РЕШЕНИЕ

4.67 Стержень из стали имеет длину l=2 м и площадь поперечного сечения S=10 мм2. Верхний конец стержня закреплен неподвижно, к нижнему прикреплен упор. На стержень надет просверленный посередине груз массой m=10 кг. Груз падает с высоты h=10 см и задерживается упором. Наити удлинение x стержня при ударе груза; нормальное напряжение, возникающее при этом в материале стержня
СМОТРЕТЬ РЕШЕНИЕ