Решение задач » Решебники онлайн » Решебники по физике онлайн » Решебник Чертов онлайн (ГДЗ Чертов - решение задач из задачника, соавтор Воробьев)
Решебник Чертов онлайн
Решебник Чертова, Воробьева по физике

35. Фотоэлектрический эффект

1 Определить максимальную скорость vmax фотоэлектронов, вырываемых с поверхности серебра: 1) ультрафиолетовым излучением с длиной волны λ1=0,155 мкм; 2) γ-излучением с длиной волны λ2=2,47 пм.
СМОТРЕТЬ РЕШЕНИЕ

2 Определить красную границу λ0 фотоэффекта для цезия, если при облучении его поверхности фиолетовым светом длиной волны λ=400 нм максимальная скорость vmax фотоэлектронов равна 0,65 Мм/с.
СМОТРЕТЬ РЕШЕНИЕ

35.1 Определить работу выхода А электронов из натрия, если красная граница фотоэффекта λ0=500 нм.
СМОТРЕТЬ РЕШЕНИЕ

35.2 Будет ли наблюдаться фотоэффект, если на поверхность серебра направить ультрафиолетовое излучение с длиной волны λ=300 нм?
СМОТРЕТЬ РЕШЕНИЕ

35.3 Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта λ0=307 нм и максимальная кинетическая энергия Tmax фотоэлектрона равна 1 эВ?
СМОТРЕТЬ РЕШЕНИЕ

35.4 На поверхность лития падает монохроматический свет (λ=310 нм). Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 B. Определить работу выхода A.
СМОТРЕТЬ РЕШЕНИЕ

35.5 Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, нужно приложить задерживающую разность потенциалов U1=3,7 B. Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6 B. Определить работу А выхода электронов с поверхности этой пластинки.
СМОТРЕТЬ РЕШЕНИЕ

35.6 На цинковую пластинку падает монохроматический свет с длиной волны λ=220 нм. Определить максимальную скорость vmax фотоэлектронов.
СМОТРЕТЬ РЕШЕНИЕ

35.7 Определить длину волны λ ультрафиолетового излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10 Мм/с. Работой выхода электронов из металла пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

35.8 Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла под действием γ-излучения с длиной волны λ=0,3 нм.
СМОТРЕТЬ РЕШЕНИЕ

35.9 Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла при облучении γ-фотонами с энергией ε=1,53 МэВ.
СМОТРЕТЬ РЕШЕНИЕ

35.10 Максимальная скорость vmax фотоэлектронов, вылетающих из металла при облучении его γ-фотонами, равна 291 Мм/с. Определить энергию ε γ-фотонов.
СМОТРЕТЬ РЕШЕНИЕ
36. Давление света. Фотоны

36.1 Определить давление p солнечного излучения на зачерненную пластинку, расположенную перпендикулярно солнечным лучам и находящуюся вне земной атмосферы на среднем расстоянии от Земли до Солнца (см. сноску к задаче 34.7).
СМОТРЕТЬ РЕШЕНИЕ

36.2 Определить поверхностную плотность I потока энергии излучения, падающего на зеркальную поверхность, если световое давление p при перпендикулярном падении лучей равно 10 мкПа.
СМОТРЕТЬ РЕШЕНИЕ

36.3 Поток энергии Фe, излучаемый электрической лампой, равен 600 Вт. На расстоянии r=1 м от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром d=2 см. Принимая, что излучение лампы одинаково во всех направлениях и что зеркальце полностью отражает падающий на него свет, определить силу F светового давления на зеркальце.
СМОТРЕТЬ РЕШЕНИЕ

36.4 На зеркальце с идеально отражающей поверхностью площадью S=1,5 см2 падает нормально свет от электрической дуги. Определить импульс p, полученный зеркальцем, если поверхностная плотность потока излучения φ, падающего на зеркальце, равна 0,1 МВт/м2. Продолжительность облучения t=1 c.
СМОТРЕТЬ РЕШЕНИЕ

36.5 Спутник в форме шара движется вокруг Земли на такой высоте, что поглощением солнечного света в атмосфере можно пренебречь. Диаметр спутника d=40 м. Зная солнечную постоянную (см. задачу 34.7) и принимая, что поверхность спутника полностью отражает свет, определить силу давления F солнечного света на спутник.
СМОТРЕТЬ РЕШЕНИЕ

36.6 Определить энергию ε, массу m и импульс p фотона, которому соответствует длина волны λ=380 нм (фиолетовая граница видимого спектра).
СМОТРЕТЬ РЕШЕНИЕ

36.7 Определить длину волны λ, массу m и импульс p фотона с энергией ε=1 МэВ. Сравнить массу этого фотона с массой покоящегося электрона.
СМОТРЕТЬ РЕШЕНИЕ

36.8 Определить длину волны λ фотона, импульс которого равен импульсу электрона, обладающего скоростью v=10 Мм/с.
СМОТРЕТЬ РЕШЕНИЕ

36.9 Определить длину волны λ фотона, масса которого равна массе покоя: 1) электрона; 2) протона
СМОТРЕТЬ РЕШЕНИЕ

36.10 Давление p монохроматического света (λ=600 нм) на черную поверхность, расположенную перпендикулярно падающим лучам, равно 0,1 мкПа. Определить число N фотонов, падающих за время t=1 с на поверхность площадью S=1 см2.
СМОТРЕТЬ РЕШЕНИЕ

36.11 Монохроматическое излучение с длиной волны λ=500 нм падает нормально на плоскую зеркальную поверхность и давит на нее с силой F= 10 нН. Определить число N1 фотонов, ежесекундно падающих на эту поверхность.
СМОТРЕТЬ РЕШЕНИЕ

36.12 Параллельный пучок монохроматического света (λ=662 нм) падает на зачерненную поверхность и производит на нее давление p=0,3 мкПа. Определить концентрацию n фотонов в световом пучке.
СМОТРЕТЬ РЕШЕНИЕ

1 Пучок монохроматического света с длиной волны λ=663 нм падает нормально на зеркальную плоскую поверхность. Поток энергии Фe=0,6 Вт. Определить силу F давления, испытываемую этой поверхностью, а также число N фотонов, падающих на нее за время t=5 c.
СМОТРЕТЬ РЕШЕНИЕ

2 Параллельный пучок света длиной волны λ=500 нм падает нормально на зачерненную поверхность, производя давление p=10 мкПа. Определить: 1) концентрацию n фотонов в пучке; 2) число n1 фотонов, падающих на поверхность площадью 1 м2 за время 1 c.
СМОТРЕТЬ РЕШЕНИЕ
37. Эффект Комптона

37.1 Рентгеновское излучение длиной волны λ=55,8 пм рассеивается плиткой графита (комптон-эффект). Определить длину волны λ света, рассеянного под углом θ=60° к направлению падающего пучка света.
СМОТРЕТЬ РЕШЕНИЕ

37.2 Определить максимальное изменение длины волны при комптоновском рассеянии: 1) на свободных электронах; 2) на свободных протонах.
СМОТРЕТЬ РЕШЕНИЕ

37.3 Определить угол θ рассеяния фотона, испытавшего соударение со свободным электроном, если изменение длины волны Δλ при рассеянии равно 3,62 пм.
СМОТРЕТЬ РЕШЕНИЕ

37.4 Фотон с энергией ε=0,4 мэВ рассеялся под углом θ=90° на свободном электроне. Определить энергию ε рассеянного фотона и кинетическую энергию Т электрона отдачи.
СМОТРЕТЬ РЕШЕНИЕ

37.5 Определить импульс p электрона отдачи при эффекте Комптона, если фотон с энергией, равной энергии покоя электрона, был рассеян на угол θ=180°.
СМОТРЕТЬ РЕШЕНИЕ

37.6 Какая доля энергии фотона при эффекте Комптона приходится на электрон отдачи, если фотон претерпел рассеяние на угол θ=180°? Энергия ε фотона до рассеяния равна 0,255 МэВ.
СМОТРЕТЬ РЕШЕНИЕ

37.7 Фотон с энергией ε=0,25 МэВ рассеялся на свободном электроне. Энергия ε рассеянного фотона равна 0,2 МэВ. Определить угол рассеяния θ.
СМОТРЕТЬ РЕШЕНИЕ

37.8 Угол рассеяния θ фотона равен 90°. Угол отдачи φ электрона равен 30°. Определить энергию ε падающего фотона.
СМОТРЕТЬ РЕШЕНИЕ

37.9 Фотон (λ= 1 пм) рассеялся на свободном электроне под углом θ=90° Какую долю своей энергии фотон передал электрону?
СМОТРЕТЬ РЕШЕНИЕ

37.10 Длина волны λ фотона равна комптоновской длине λC электрона. Определить энергию ε и импульс p фотона.
СМОТРЕТЬ РЕШЕНИЕ

37.11 Энергия ε падающего фотона равна энергии покоя электрона. Определить долю w1 энергии падающего фотона, которую сохранит рассеянный фотон, и долю w2 этой энергии, полученную электроном отдачи, если угол рассеяния θ равен: 1) 60°; 2) 90°; 3) 180°.
СМОТРЕТЬ РЕШЕНИЕ

1 В результате эффекта Комптона фотон при соударении с электроном был рассеян на угол θ=90°. Энергия ε рассеянного фотона равна 0,4 МэВ. Определить энергию ε фотона до рассеяния.
СМОТРЕТЬ РЕШЕНИЕ

2 Фотон с энергией ε=0,75 МэВ рассеялся на свободном электроне под углом θ=60°. Принимая, что кинетическая энергия и импульс электрона до соударения с фотоном были пренебрежимо малы, определить: 1) энергию ε рассеянного фотона; 2) кинетическую энергию T электрона отдачи; 3) направление его движения.
СМОТРЕТЬ РЕШЕНИЕ
38. Атом водорода по теории Бора

38.1 Вычислить радиусы r2 и r3 второй и третьей орбит в атоме водорода.
СМОТРЕТЬ РЕШЕНИЕ

38.2 Определить скорость v электрона на второй орбите атома водорода.
СМОТРЕТЬ РЕШЕНИЕ

38.3 Определить частоту обращения электрона на второй орбите атома водорода.
СМОТРЕТЬ РЕШЕНИЕ

38.4 Определить потенциальную П, кинетическую Т и полную E энергии электрона, находящегося на первой орбите атома водорода.
СМОТРЕТЬ РЕШЕНИЕ

38.5 Определить длину волны λ, соответствующую третьей спектральной линии в серии Бальмера.
СМОТРЕТЬ РЕШЕНИЕ

38.6 Найти наибольшую λmax и наименьшую λmin длины волн в первой инфракрасной серии спектра водорода (серии Пашена).
СМОТРЕТЬ РЕШЕНИЕ

38.7 Вычислить энергию ε фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на первый.
СМОТРЕТЬ РЕШЕНИЕ

38.8 Определить наименьшую εmin и наибольшую εmax энергии фотона в ультрафиолетовой серии спектра водорода (серии Лаймана).
СМОТРЕТЬ РЕШЕНИЕ

38.9 Атомарный водород, возбужденный светом определенной длины волны, при переходе в основное состояние испускает только три спектральные линии. Определить длины волн этих линий и указать, каким сериям они принадлежат.
СМОТРЕТЬ РЕШЕНИЕ

38.10 Фотон с энергией ε= 16,5 эВ выбил электрон из невозбужденного атома водорода. Какую скорость v будет иметь электрон вдали от ядра атома?
СМОТРЕТЬ РЕШЕНИЕ

38.11 Вычислить длину волны λ, которую испускает ион гелия Не+ при переходе со второго энергетического уровня на первый. Сделать такой же подсчет для иона лития Li+ +.
СМОТРЕТЬ РЕШЕНИЕ

38.12 Найти энергию Ei и потенциал Ui ионизации ионов Не+ и Li+ +.
СМОТРЕТЬ РЕШЕНИЕ

38.13 Вычислить частоты f1 и f2 вращения электрона в атоме водорода на второй и третьей орбитах. Сравнить эти частоты с частотой ν излучения при переходе электрона с третьей на вторую орбиту.
СМОТРЕТЬ РЕШЕНИЕ

38.14 Атом водорода в основном состоянии поглотил квант света с длиной волны λ=121,5 нм. Определить радиус r электронной орбиты возбужденного атома водорода.
СМОТРЕТЬ РЕШЕНИЕ

38.15 Определить первый потенциал U1 возбуждения атома водорода.
СМОТРЕТЬ РЕШЕНИЕ

38.16 С помощью постулатов Бора дать вывод для радиуса rn боровской орбиты электрона в водородоподобном атоме. Найти отношение rHe+/rH радиусов боровских орбит для иона гелия He+ и атома водорода H, находящихся в основном состоянии. Будет ли изменяться и как это отношение для возбужденных состояний тех же атомов, при одинаковых номерах n орбит?
СМОТРЕТЬ РЕШЕНИЕ
39. Рентгеновское излучение

1 Определить длину волны λKα и энергию εKα фотона Kα-линии рентгеновского спектра, излучаемого вольфрамом при бомбардировке его быстрыми электронами.
СМОТРЕТЬ РЕШЕНИЕ

2 Определить напряжение U, под которым работает рентгеновская трубка, если коротковолновая граница λmin в спектре тормозного рентгеновского излучения оказалась равной 15,5 пм.
СМОТРЕТЬ РЕШЕНИЕ

39.1 Определить скорость v электронов, падающих на антикатод рентгеновской трубки, если минимальная длина волны λmin в сплошном спектре рентгеновского излучения равна 1 нм.
СМОТРЕТЬ РЕШЕНИЕ

39.2 Определить коротковолновую границу λmin сплошного спектра рентгеновского излучения, если рентгеновская трубка работает под напряжением U=30 кВ
СМОТРЕТЬ РЕШЕНИЕ

39.3 Вычислить наибольшую длину волны λmax в K-серии характеристического рентгеновского спектра скандия
СМОТРЕТЬ РЕШЕНИЕ

39.4 При исследовании линейчатого рентгеновского спектра некоторого элемента было найдено, что длина волны λ линии Kα равна 76 пм. Какой это элемент?
СМОТРЕТЬ РЕШЕНИЕ

39.5 Какую наименьшую разность потенциалов Umin нужно приложить к рентгеновской трубке, антикатод которой покрыт ванадием (Z=23), чтобы в спектре рентгеновского излучения появились все линии K-серии ванадия? Граница K-серии ванадия λ=226 пм.
СМОТРЕТЬ РЕШЕНИЕ

39.6 Определить энергию ε фотона, соответствующего линии Kα в характеристическом спектре марганца (Z=25)
СМОТРЕТЬ РЕШЕНИЕ

39.7 В атоме вольфрама электрон перешел с М-слоя на L-слой. Принимая постоянную экранирования σ равной 5,5, определить длину волны λ испущенного фотона.
СМОТРЕТЬ РЕШЕНИЕ

39.8 Рентгеновская трубка работает под напряжением U=1 MB. Определить наименьшую длину волны λmin рентгеновского излучения.
СМОТРЕТЬ РЕШЕНИЕ

39.9 Вычислить длину волны λ и энергию ε фотона, принадлежащего Kα-линии в спектре характеристического рентгеновского излучения платины.
СМОТРЕТЬ РЕШЕНИЕ

39.10 При каком наименьшем напряжении Umin на рентгеновской трубке начинают появляться линии серии Kα меди?
СМОТРЕТЬ РЕШЕНИЕ