Решение задач » Решебники онлайн » Решебники по теоретической механике онлайн » Решебник Мещерский онлайн (ГДЗ Мещерский 1986 г, решение задач)
Решебник Мещерский онлайн

Системы с качением. Неголономные связи
50.1. Показать, что условие качения диска без проскальзывания по заданной кривой на поверхности выражается в виде конечного соотношения между обобщенными координатами.
СМОТРЕТЬ РЕШЕНИЕ

50.2. Получить условие качения без скольжения тела, поверхность которого является цилиндрической поверхностью, по плоскости.
СМОТРЕТЬ РЕШЕНИЕ

50.3. Решить предыдущую задачу в случае, когда направляющая цилиндрической поверхности является эллипсом.
СМОТРЕТЬ РЕШЕНИЕ

50.4. Решить задачу 50.2 в случае, когда направляющая цилиндрической поверхности является параболой.
СМОТРЕТЬ РЕШЕНИЕ

50.5. Решить задачу 50.2 в случае, когда направляющая цилиндрической поверхности является ветвью гиперболы.
СМОТРЕТЬ РЕШЕНИЕ

50.6. Получить условие качения без скольжения тела, ограниченного цилиндрической поверхностью, по цилиндрической поверхности. В качестве параметров, определяющих положение сечения тела на плоскости, принять s, θ, где s —длина дуги вдоль направляющей опорной поверхности, отсчитываемая от некоторой точки до точки К соприкосновения двух направляющих, θ -угол между осью системы координат скрепленной с сечением тела, и касательной в точке К.
СМОТРЕТЬ РЕШЕНИЕ

50.7. Решить предыдущую задачу в случае, когда по круговому цилиндру радиуса r катится без скольжения цилиндрическое тело, направляющей которого является 1) эллипс, 2) парабола, 3) ветвь гиперболы.
СМОТРЕТЬ РЕШЕНИЕ

50.8. В вариаторе угловой скорости (см. рисунок) расстояние диска радиуса r от оси горизонтального абсолютно шероховатого диска может изменяться по произвольному закону. Найти связь между углами поворота φ и ψ дисков.
СМОТРЕТЬ РЕШЕНИЕ

50.9. Два шероховатых круговых конуса, оси которых параллельны, соприкасаются при помощи колесика. Ось колесика параллельна образующим конусов. Колесико может перемещаться вдоль своей оси по произвольному закону. Найти связь между угловыми скоростями вращения конусов, если α - угол между осью и образующей конуса, h — высота конуса.
СМОТРЕТЬ РЕШЕНИЕ

50.10. Конек с полукруглым лезвием катится по льду. Написать условие отсутствия проскальзывания конька в поперечном направлении.
СМОТРЕТЬ РЕШЕНИЕ

50.11. Найти уравнение кинематической связи при качении диска радиуса а по абсолютно шероховатой плоскости, приняв в качестве параметров, определяющих положение диска, 1) координаты xс, ус, zc центра диска и углы Эйлера θ, ψ, φ, 2) координаты x, y точки контакта диска с плоскостью и углы Эйлера θ, ψ, φ.
СМОТРЕТЬ РЕШЕНИЕ

50.12. Решить предыдущую задачу для диска с острым краем, когда проскальзывание отсутствует лишь в поперечном направлении.
СМОТРЕТЬ РЕШЕНИЕ

50.13. Колесо радиуса а с поперечной насечкой (шестерня) катится по плоскости так, что его ось всегда параллельна плоскости. Найти уравнение кинематической связи.
СМОТРЕТЬ РЕШЕНИЕ

50.14. Шар радиуса а катается по абсолютно шероховатой поверхности. Найти уравнения кинематической связи в случаях, когда поверхность представляет собой 1) плоскость, 2) цилиндр радиуса R, 3) сферическую чашку радиуса R (R>a), 4) конус с углом а между осью и образующей.
СМОТРЕТЬ РЕШЕНИЕ

50.15. Эллипсоид вращения (а —большая полуось, b — малая полуось) катается по абсолютно шероховатой плоскости. Написать уравнение кинематической связи, приняв за обобщенные координаты x, y, θ, ψ, φ, где x, у — координаты точки соприкосновения эллипсоида с плоскостью, θ, ψ, φ — углы Эйлера.
СМОТРЕТЬ РЕШЕНИЕ

50.16. Тороидальное тело катается по абсолютно шероховатой плоскости, b— радиус кривизны меридиана тора на экваторе, a+b - радиус экваториальной окружности тора. Найти уравнения кинематической связи, приняв за обобщенные координаты x, y, θ, ψ, φ. где x, у — координаты точки соприкосновения тора с плоскостью, θ — угол наклона тора, ψ — угол между следом средней плоскости тора и осью Ох, φ — угол собственного вращения тора.
СМОТРЕТЬ РЕШЕНИЕ

50.17. Определить число обобщенных координат и число степеней свободы двухколесной тележки. Корпус тележки движется параллельно плоскости, по которой катаются без скольжения колеса, свободно вращающиеся на общей оси, r — радиус колес, l — длина полуоси.
СМОТРЕТЬ РЕШЕНИЕ

50.18. Определить число обобщенных координат и число степеней свободы гусеничного трактора, учитывая, что гусеницы обеспечивают качение без скольжения лишь в продольном направлении; r —радиус опорных колес, 2l—ширина колеи.
СМОТРЕТЬ РЕШЕНИЕ

50.19. Определить число обобщенных координат и число степеней свободы буера.
СМОТРЕТЬ РЕШЕНИЕ

50.20. Абсолютно шероховатый диск радиуса r катится по прямой. На диск опирается стержень, конец которого скользит по той же прямой. Определить число обобщенных координат и число степеней свободы системы, состоящей из диска и стержня.
СМОТРЕТЬ РЕШЕНИЕ

50.21. Определить число обобщенных координат и число степеней свободы системы, состоящей из трех шероховатых цилиндров. Два одинаковых цилиндра радиуса r катаются но горизонтальной плоскости, а третий цилиндр радиуса R катается по этим двум цилиндрам.
СМОТРЕТЬ РЕШЕНИЕ

50.22. Составить уравнения движения гусеничного трактора, описанного в задаче 50.18, при условии, что момент сил, передаваемый от двигателя на левую гусеницу, равен М1 (t), а на правую гусеницу — M2(t), m— масса трактора. Массой гусениц и колес пренебречь; J — момент инерции трактора относительно вертикальной оси, проходящей через центр масс.
СМОТРЕТЬ РЕШЕНИЕ

50.23. Показать, что железнодорожная колесная пара (скат) при качении по рельсам без скольжения имеет одну степень свободы.
СМОТРЕТЬ РЕШЕНИЕ

50.24. Однородный диск радиуса а и массы m катится без скольжения по горизонтальной плоскости. Составить уравнения движения диска 1) в координатах хс, ус, θ, ψ, φ, где хс, ус — координаты центра масс диска, θ, ψ, φ —углы Эйлера, 2) в координатах x, y, θ, ψ, φ где x у — координаты точки контакта диска с плоскостью, θ, ψ, φ — углы Эйлера (см. задачу 50.11); 3) в квазикоординатах pqr являющихся проекциями вектора мгновенной угловой скорости вращения диска на главные оси центрального эллипсоида инерции; A, С — главные центральные моменты инерции диска.
СМОТРЕТЬ РЕШЕНИЕ

50.25. Используя решение предыдущей задачи, найти все возможные стационарные движения диска.
СМОТРЕТЬ РЕШЕНИЕ

50.26. Найти условия устойчивости движения диска 1) при качении диска по прямой, когда плоскость диска вертикальна; 2) при верчении диска вокруг неподвижного вертикального диаметра; 3) при качении диска по окружности, когда плоскости диска вертикальны.
СМОТРЕТЬ РЕШЕНИЕ
Кеплерово движение
51.1 Модуль силы всемирного тяготения, действующий на материальную точку массы m, определяется равенством F = mμ/r2, где μ = fМ— гравитационный параметр притягивающего центра (М — его масса, f—гравитационная постоянная) и r—расстояние от центра притяжения до притягиваемой точки. Зная радиус R небесного тела и ускорение g силы тяжести *) на его поверхности, определить гравитационный параметр ц небесного тела и вычислить его для Земли, если ее радиус R =6370 км, а g = 9,81 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

51.2 Определить гравитационный параметр и ускорение силы тяжести gn на поверхности небесного тела, если известны отношения его массы Мn и радиуса Rn к массе М и радиусу R Земли. Вычислить эти величины для Луны, Венеры, Марса и Юпитера, для которых соответствующие отношения даны в следующей таблице
СМОТРЕТЬ РЕШЕНИЕ

51.3 Материальная точка равномерно движется по круговой орбите на высоте H над поверхностью небесного тела радиуса R под действием силы всемирного тяготения. Определить скорость движения v1 и период обращения Т материальной точки.
СМОТРЕТЬ РЕШЕНИЕ

51.4 Пренебрегая высотой полета искусственного спутника над поверхностью небесного тела, определить первую космическую скорость v1 и соответствующий период Т обращения для Земли, Луны. Венеры, Марса и Юпитера.
СМОТРЕТЬ РЕШЕНИЕ

51.5 На какой высоте нужно запустить круговой спутник Земли, обращающийся в плоскости экватора, для того, чтобы он все время находился над одним и тем же пунктом Земли?
СМОТРЕТЬ РЕШЕНИЕ

51.6 Под каким углом β пересекается с земным экватором трасса спутника (проекция его траектории на земную поверхность), если он движется по круговой орбите высоты H, наклоненной под углом α к плоскости экватора?
СМОТРЕТЬ РЕШЕНИЕ

51.7 Точка массы m притягивается к неподвижному центру по закону всемирного тяготения F = mμ/r2, где μ—гравитационный параметр центра притяжения. Найти интеграл энергии.
СМОТРЕТЬ РЕШЕНИЕ

51.8 Определить, при какой высоте Н круговой орбиты спутника его потенциальная энергия относительно поверхности планеты радиуса R равна его кинетической энергии.
СМОТРЕТЬ РЕШЕНИЕ

51.9 Определить, с какой скоростью войдет метеорит в земную атмосферу, если его скорость на бесконечности v∞= 10 км/с.
СМОТРЕТЬ РЕШЕНИЕ

51.10 Какую минимальную скорость v2 нужно сообщить космическому аппарату на поверхности планеты, чтобы он удалился в бесконечность?
СМОТРЕТЬ РЕШЕНИЕ

51.11 Определить вторую космическую скорость для Земли, Луны, Венеры, Марса и Юпитера.
СМОТРЕТЬ РЕШЕНИЕ

51.12 Точка движется под действием центральной силы. Считая, что модуль радиус-вектора г точки зависит от времени t сложным образом через полярный угол φ, определить скорость и ускорение точки *).
СМОТРЕТЬ РЕШЕНИЕ

51.13 Точка массы m движется под действием центральной силы по коническому сечению, уравнение которого в полярных координатах имеет вид где р и е — параметр и эксцентриситет траектории. Определить силу, под действием которой движется точка.
СМОТРЕТЬ РЕШЕНИЕ

51.14 Точка массы m притягивается к неподвижному полюсу по закону всемирного тяготения F = mμ/r2. Найти траекторию движения точки.
СМОТРЕТЬ РЕШЕНИЕ

51.15 Материальная точка движется под действием силы всемирного тяготения по эллиптической траектории, эксцентриситет которой е<1, а параметр р. Зная интеграл площадей c = = r2 φ=|r x v|, определить полуоси а и b эллиптической траектории и период обращения Т.
СМОТРЕТЬ РЕШЕНИЕ

51.16 В условиях предыдущей задачи определить ускорение точки в моменты, когда она проходит апогей и перигей.
СМОТРЕТЬ РЕШЕНИЕ

51.17 Зная период обращения Т спутника вокруг Земли по эллиптической орбите и разность его апогея и перигея Н, определить эксцентриситет орбиты.
СМОТРЕТЬ РЕШЕНИЕ

51.18 Спутник движется около планеты радиуса R по эллиптической орбите с эксцентриситетом е. Найти большую полуось его орбиты, если отношение высот перигея и апогея равно γ<1.
СМОТРЕТЬ РЕШЕНИЕ

51.19 Точка движется под действием силы всемирного тяготения F = mμ/r2. Выразить постоянную энергии h (см. задачу 51.7) через элементы траектории точки и гравитационный параметр μ.
СМОТРЕТЬ РЕШЕНИЕ

51.20 В начальный момент материальная точка, движущаяся по закону всемирного тяготения, находилась в положении M0 на расстоянии r0 от притягивающего центра и имела скорость v0 угол между вектором скорости v0 и линией горизонта (касательной, проведенной в точке М0 к окружности, центр которой совпадает с центром притяжения) равнялся θ0, а полярный угол был равен φ0. Определить эксцентриситет e и угол ε между полярной осью и фокусной линией конического сечения
СМОТРЕТЬ РЕШЕНИЕ

51.21 Определить, какую скорость надо сообщить космическому аппарату, чтобы, достигнув высоты Н над поверхностью планеты и отделившись от последней ступени ракеты, он двигался по эллиптической, параболической или гиперболической траектории. Радиус планеты R.
СМОТРЕТЬ РЕШЕНИЕ

51.22. Какую нужно сообщить начальную скорость v0 = v3 материальной точке у поверхности Земли, чтобы она могла покинуть пределы Солнечной системы.
СМОТРЕТЬ РЕШЕНИЕ

51.23 В момент отделения космического аппарата от последней ступени ракеты он находился в точке М0 на высоте Н = 230 км от поверхности Земли и имел начальную скорость v0 = 8,0 км/с, причем вектор скорости Vo составлял с линией горизонта (касательной, проведенной в точке М0 к окружности радиуса r0) угол θ0 = 0,02 рад. Определить постоянную площадей c, параметр p траектории, постоянную энергии h, направление большой оси эллиптической траектории спутника, эксцентриситет е траектории, апогей (Нmах) и периг гей (Hmin) и период Т обращения спутника.
СМОТРЕТЬ РЕШЕНИЕ

51.24 При каком направлении начальной скорости космический аппарат упадет на поверхность планеты радиуса R вне зависимости от величины начальной скорости? Ответ: Если начальная скорость будет направлена внутрь конуса, описанного вокруг планеты из начальной точки.
СМОТРЕТЬ РЕШЕНИЕ

51.25 При каких начальных условиях траектория космического аппарата, запущенного на высоте И от поверхности планеты радиуса R, не пересечет ее поверхности?
СМОТРЕТЬ РЕШЕНИЕ

51.26 Найти зависимость между периодами Тi обращения планет вокруг Солнца и большими полуосями ai, их эллиптических траекторий.
СМОТРЕТЬ РЕШЕНИЕ

51.27 Период обращения одного из спутников Юпитера, называемого Ио, равен 1,77 суток, причем радиус его орбиты составляет 5,91 радиуса Юпитера. Среднее расстояние Юпитер — Солнце равно 5,20 среднего расстояния Земля — Солнце (5,20*23000 земных радиусов), а период обращения Юпитера вокруг Солнца равен 11,8 лет. Определить отношение массы Юпитера к массе Солнца (радиус Юпитера равен 11,14 радиуса Земли).
СМОТРЕТЬ РЕШЕНИЕ

51.28 Под средним значением |r| радиус-вектора точки, движущейся по эллиптической траектории, понимается величина, определяемая равенством, где Т - период обращении. Определить среднее значение радиус-вектора планеты, если a — большая полуось, а е — эксцентриситет ее эллиптической траектории.
СМОТРЕТЬ РЕШЕНИЕ

51.29 Два спутника, имеющие равные массы, движутся в одном направлении вокруг притягивающего центра по компланарным орбитам, одна из которых — круговая радиуса r0, а другая — эллиптическая с расстояниями перигея и апогея r0 и 8r0 соответственно. Полагая, что спутники путем непосредственной стыковки соединились друг с другом в точке соприкосновения их орбит и дальнейшее движение продолжали вместе, найти апогей их новой орбиты.
СМОТРЕТЬ РЕШЕНИЕ

51.30 Определить связь между истинной φ и эксцентрической E аномалиями точки на эллиптической орбите эксцентриситета е.
СМОТРЕТЬ РЕШЕНИЕ

51.31 Выразить скорость в любом точке эллиптической орбиты через эксцентрическую аномалию.
СМОТРЕТЬ РЕШЕНИЕ

51.32 Найти па эллиптической орбите такие точки, скорость движения в которых равна среднему геометрическому скоростей в перигее и апогее.
СМОТРЕТЬ РЕШЕНИЕ

51.33 Зная выражения для радиус-вектора точки, совершающей эллиптическое движение вокруг притягивающего центра: где еr — орт радиус-вектора r, проведенного из центра притяжения, (φ — истинная, а Е— эксцентрическая аномалии, найти выражения для вектора орбитальной скорости этой точки, записанные в орбитальной и инерциальной системах координат.
СМОТРЕТЬ РЕШЕНИЕ

51.34 В какой точке эллиптической орбиты угол наклона траектории к местному горизонту (плоскость, перпендикулярная радиус-вектору) достигает наибольшего значения?
СМОТРЕТЬ РЕШЕНИЕ

51.35 Спутник движется по круговой орбите радиуса r, делая один оборот за время Т. В результате получения радиального импульса скорости величины и он переходит на эллиптическую орбиту. Определить период обращения по эллиптической орбите.
СМОТРЕТЬ РЕШЕНИЕ

51.36 Спутник движется по круговой орбите радиуса r, делая один оборот за время Т. В результате получения тангенциального (касательного) импульса скорости величины и он переходит на эллиптическую орбиту. Определить период обращения по эллиптической орбите Т1
СМОТРЕТЬ РЕШЕНИЕ

51.37 Спутник движется по круговой околоземной орбите радиуса r. Определить величину радиального импульса скорости, в результате которого спутник перейдет на эллиптическую орбиту с перигеем r1
СМОТРЕТЬ РЕШЕНИЕ

51.38 Космический корабль движется со скоростью v =30 км/с по орбите Земли, имеющей радиус r1= 150*10^6 км. Какой касательный импульс скорости и он должен получить, чтобы в афелии своей новой орбиты он достиг орбиты Марса (r2 = 228*10^6 км)? Решить такую же задачу для случая полета к орбите Венеры (r3 = 108*106^ км).
СМОТРЕТЬ РЕШЕНИЕ

51.39 Спутник движется по эллиптической околоземной орбите с радиусом перигея и апогея соответственно r1 и r2. Определить величину касательного прироста скорости и в перигее, при котором высота апогея увеличится на Н.
СМОТРЕТЬ РЕШЕНИЕ

51.40 Космический корабль, движущийся по круговой спутниковой орбите, должен стартовать с нее путем получения касательного импульса скорости м выйти на гиперболическую орбиту с заданным значением скорости на бесконечности и . При каком радиусе r0 начальной круговой орбиты величина необходимого импульса и будет наименьшей?
СМОТРЕТЬ РЕШЕНИЕ
Разные задачи (динамика космического полета)
52.1 Две свободные точки, массы которых равны m1 и m2, движутся под действием сил взаимного притяжения. Определить закон движения первой точки относительно второй.
СМОТРЕТЬ РЕШЕНИЕ

52.2 Какой вид примет зависимость между периодами Ti обращения планет вокруг Солнца и большими полуосями ai их эллиптических орбит, если учесть движение Солнца, вызванное притяжением соответствующей планеты?
СМОТРЕТЬ РЕШЕНИЕ

52.3 Два однородных шара радиусов R1 и R2 начали двигаться из состояния покоя под действием сил взаимного притяжения. Определить, с какой относительной скоростью v, столкнутся шары, если первоначальное расстояние между их центрами равнялось Ј, а массы шаров равны m1 и m2.
СМОТРЕТЬ РЕШЕНИЕ

52.4 Две точки, массы которых равны m1 и m2, начали двигаться из состояния покоя под действием сил взаимного притяжения. Определить время Т, через которое столкнутся точки, если первоначальное расстояние между ними равнялось L.
СМОТРЕТЬ РЕШЕНИЕ

52.5 Две свободные точки, массы которых равны m1 и m2, движутся под действием сил взаимного притяжения. Определить закон движения точек относительно их центра масс C.
СМОТРЕТЬ РЕШЕНИЕ

52.6 Проекция центральной силы на радиус-вектор равна , где μ>0 и ν — некоторые постоянные. Определить траекторию движущейся точки.
СМОТРЕТЬ РЕШЕНИЕ

52.7 Космический аппарат массы m приближается к планете по прямой, проходящей через ее центр. На какой высоте Н от поверхности планеты нужно включить двигатель, чтобы создаваемая им постоянная тормозящая сила, равная mТ, обеспечила мягкую посадку (посадку с нулевой скоростью)? Скорость космического аппарата в момент включения двигателя равна v0, гравитационный параметр планеты μ, ее радиус R; притяжением других небесных тел, сопротивлением атмосферы и изменением массы двигателя пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

52.8 Определить полезную работу, которую должен совершить двигатель ракеты, чтобы поднять космический аппарат на высоту H над поверхностью планеты и сообщить ему на этой высоте круговую и параболическую космические скорости. Масса космического аппарата на поверхности планеты равна М, радиус планеты R; сопротивлением атмосферы пренебречь. Вычислить эту работу для второй космической скорости для Земли, если М = 5000 кг.
СМОТРЕТЬ РЕШЕНИЕ

52.9 Космический аппарат вращается с угловой скоростью Ω0. Определить, какую полную работу должен совершить двигатель маховика М, чтобы остановить вращение космического аппарата, считая, что вращение последнего происходит вокруг поступательно перемещающейся оси, проходящей через его центр масс. Ось вращения маховика совпадает с осью вращения аппарата; J и J0 — моменты инерции маховика и аппарата (вместе с маховиком) относительно общей оси вращения. В начальный момент угловая скорость маховика равна угловой скорости аппарата.
СМОТРЕТЬ РЕШЕНИЕ

52.10 Считая, что статор электромотора системы, описанной в задаче 52.9, создает вращающий момент Mвр = М0 - xω, где М0 и x —некоторые положительные постоянные, ω — относительная угловая скорость маховика, найти условие, необходимое для того, чтобы торможение вращения космического аппарата произошло за конечное время. Предполагая, что это условие выполнено, определить время Т торможения.
СМОТРЕТЬ РЕШЕНИЕ

52.11 Определить угол φ, на который повернется космический аппарат за время торможения вращения, если оно осуществляется способами, описанными в задачах 52.9 и 52.10.
СМОТРЕТЬ РЕШЕНИЕ

52.12 Для поворота корпуса космическою аппарата используется электродвигатель-маховик, уравнение движения которого на вращающемся аппарате имеет вид ω + ω/T = u, где ω относительная угловая скорость маховика, Т — его постоянная времени, u — управляющее напряжение, принимающее значения +-u0. Определить длительность t1 разгона (u = u0) и торможения t2(u =— u0) маховика, если первоначально невращающийся корпус при неподвижном маховике требуется повернуть на заданный угол φ и остановить. Ось вращения маховика проходит через центр масс космического аппарата; движение считать плоским. Моменты инерции маховика и аппарата относительно общей оси вращения соответственно равны J и J0
СМОТРЕТЬ РЕШЕНИЕ
Определение условий равновесия системы. Устойчивость равновесия
53.1 Ось вращения AB прямоугольной пластины наклонена под углом а к вертикали. Определить момент сил М относительно оси AB, который нужно приложить к пластине для ее поворота на угол θ. Вес пластины Р, расстояние от центра масс пластины G до оси AB равно a.
СМОТРЕТЬ РЕШЕНИЕ

53.2 Шарнирным шестиугольник, состоящий из шести равных однородных стержней веса р каждый, расположен в вертикальной плоскости. Верхняя сторона шестиугольника AB неподвижно закреплена в горизонтальном положении; остальные стороны расположены симметрично по отношению к вертикали, проходящей через середину AB. Определить, какую вертикальную силу Q надо приложить в середине горизонтальной стороны, противоположной AB, для того чтобы система находилась в безразличном равновесии.
СМОТРЕТЬ РЕШЕНИЕ

53.3 К однородному стержню AB длины 2а и веса Q, подвешенному на двух нитях длины l каждая, приложена пара сил с моментом М. Точки подвеса нитей, расположенные на одной горизонтали, находятся на расстоянии 2b друг от друга. Найти угол θ, определяющий положение равновесия стержня.
СМОТРЕТЬ РЕШЕНИЕ

53.4 Прямолинейный однородный стержень AB длины 2l упирается нижним концом А в вертикальную стену, составляя с ней угол φ. Стержень опирается также на гвоздь C, параллельный стене. Гвоздь отстоит от стены на расстоянии a. Определить угол φ в положении равновесия стержня.
СМОТРЕТЬ РЕШЕНИЕ

53.5 На гладкий цилиндр радиуса r опираются два однородных тяжелых стержня, соединенных шарниром A. Длина каждого стержня равна 2a. Определить угол 2ϑ раствора стержней, соответствующий положению равновесия.
СМОТРЕТЬ РЕШЕНИЕ

53.6. Система состоит из двух однородных стержней длины а и массы m, расположенных в вертикальной плоскости. В точке А стержни соединены шарниром. В точке O неподвижный шарнир. В точке В стержень AB соединен шарниром с телом С массы m которое может перемешаться по вертикали, проходящей через точку O. Середины стеожней OA и AB соединены пружиной жесткости с Длина пружины в ненапряженном состоянии lс< a. Найти положения равновесия и условия их устойчивости. Трением и массой пружины пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

53.7 Концы однородного тяжелого стержня длины l могут скользить без трения по кривой, заданной уравнением f(x,y) = 0 Определить положения равновесия стержня. Ось у направлена по вертикали вверх, ось x-по горизонтали вправо.
СМОТРЕТЬ РЕШЕНИЕ

53.8 Однородный тяжелый стержень длины l может скользить своими концами без трения по параболе y = ах2 .Определить возможные положения равновесия. (Ось у направлена по вертикали вверх, ось х—по горизонтали вправо.)
СМОТРЕТЬ РЕШЕНИЕ

53.9 Решить задачу 53.7 в предположении, что кривая является эллипсом, а длина стержня удовлетворяет условию l < 2а. Определить возможные положения равновесия стержня
СМОТРЕТЬ РЕШЕНИЕ

53.10 По гладкому проволочному кольцу радиуса R расположенному в вертикальной плоскости, может скользить без трения колечко. К этому колечку на нити подвешен груз массы m, другая нить, перекинутая через ничтожно малый блок B, расположенный на конце горизонтального диаметра большого кольца имеет на конце С другой груз Q массы m2. Определить положения равновесия колечка А и исследовать, какие из них устойчивы какие нет.
СМОТРЕТЬ РЕШЕНИЕ

53.11 Однородная квадратная пластинка может вращаться в вертикальной плоскости около оси, проходящей через угол O; вес пластинки Р, длина ее стороны a. К углу А пластинки привязана нить длины l, перекинутая через малый блок B, отстоящий на расстоянии а по вертикали от точки O. Па нити висит груз веса Q. Определить положения равновесия системы следовать их устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

53.12 Однородный тяжелый стержень AB длины 2a опирается на криволинейную направляющую, имеющую форму полуокружности радиуса R. Определить, пренебрегая трением, положение равновесия и исследовать его устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

53.13 Подъемный мост OA схематически изображен на рисунке в виде однородной пластины веса Р и длины 2а. К середине края пластины прикреплен канат длины l, перекинутый через малый блок, лежащий на вертикали на расстоянии 2а над точкой O. Другой конец С каната соединен с противовесом, скользящим без трепня по криволинейной направляющей. Определить форму этой направляющей и вес противовеса Q так, чтобы система находилась в безразличном равновесии. При горизонтальном положении моста противовес С находится на прямой OB.
СМОТРЕТЬ РЕШЕНИЕ

53.14 Исследовать устойчивость вертикального положения равновесия обращенного двойного маятника, изображенного на рисунке. Маятник может быть схематизирован в виде двух материальных точек масс m1 и m2, связанных стержнями длин l1 и l2. В вертикальном положении равновесия пружины (жесткости их k1 и k2) не напряжены.
СМОТРЕТЬ РЕШЕНИЕ

53.15 Исследовать устойчивость вертикального положения равновесия системы маятников, изображенной на рисунке; длина стержня первого маятника 4h, второго Зh и третьего 2h. Массы всех маятников и жесткости пружин одинаковы и соответственно равны m и k. Расстояния точек прикрепления пружин от центров масс равны h. Массой стержней пренебречь, а массы m рассматривать как материальные точки; когда маятники находятся в вертикальном положении, пружины не напряжены.
СМОТРЕТЬ РЕШЕНИЕ

53.16 В маятнике паллографа груз M подвешен на стержне OM, свободно проходящем через вращающийся цилиндрик O и шарнирно соединенном в точке A с коромыслом AO1, вращающимся около оси O1. Длина коромысла r, расстояние от центра масс груза до шарнира A равно l, расстояние OO1=h. Исследовать устойчивость вертикального положения равновесия маятника. Размерами груза и массой стержней пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

53.17 Прямолинейный проводник, по которому течет ток силы i1, притягивает параллельный ему провод AB, по которому течет ток силы i2. Провод AB имеет массу m; к нему присоединена пружина жесткости c; длина каждого из проводов l. При отсутствии в проводе А В тока расояние между проводами равно a. Определить положения равновесия системы и исследовать их устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

53.18. Стержень OА длины а может свободно вращаться вокруг точки O. К концу А стержня шарнирно прикреплен стержень AB длины a, на другом конце которого закреплен груз В массы m. Точка O и точка B соединены между собой пружиной жесткости c. Масса пружины пренебрежимо мала, длина пружины в ненапряженном состоянии равна a. Найти положения равновесия, считая, что система расположена в вертикальной плоскости. Массой стержней AB и OА пренебречь.
СМОТРЕТЬ РЕШЕНИЕ
Малые колебания системы с одной степенью свободы
54.1 Жесткий стержень OB длины l может свободно качаться на шаровом шарнире около конца O и несет шарик веса Q на другом конце. Стержень удерживается в горизонтальном положении посредством нерастяжимого вертикального шнура длины h. Расстояние OA=b. Если шарик оттянуть перпендикулярно плоскости рисунка и затем отпустить, то система начнет колебаться. Пренебрегая массой стержня, определить период малых колебаний системы.
СМОТРЕТЬ РЕШЕНИЕ

54.2 Определить период малых колебаний астатического маятника, употребляемого в некоторых сейсмографах для записи колебаний почвы. Маятник состоит из жесткого стержня длины l, несущего на конце массу m, зажатую между двумя горизонтальными пружинами жесткости k с закрепленными концами. Массой стержня пренебречь, и считать пружины в положении равновесия ненапряженными.
СМОТРЕТЬ РЕШЕНИЕ

54.3 Маятник состоит из жесткого стержня длины l, несущего массу m на своем конце. К стержню прикреплены две пружины жесткости k на расстоянии b от его верхнего конца; противоположные концы пружин закреплены. Пренебрегая массой стержня, найти период малых колебаний маятника
СМОТРЕТЬ РЕШЕНИЕ

54.4 Предполагая, что маятник, описанный в предыдущей задаче, установлен так, что масса m расположена выше точки подвеса, определить условие, при котором вертикальное положение равновесия маятника устойчиво, и вычислить период малых колебаний маятника.
СМОТРЕТЬ РЕШЕНИЕ

54.5 Цилиндр диаметра d и массы m может катиться без скольжения по горизонтальной плоскости. Две одинаковые пружины жесткости c прикреплены посередине его длины на расстоянии a от оси цилиндра; противоположные концы пружин закреплены. Определить период малых колебаний цилиндра.
СМОТРЕТЬ РЕШЕНИЕ

54.6 Определить период малых колебаний метронома, состоящего из маятника и добавочного подвижного груза G массы m. Момент инерции всей системы относительно горизонтальной оси вращения изменяется путем смещения подвижного груза G. Масса маятника M; расстояние центра масс маятника от оси вращения O равно s0; расстояние OG=s; момент инерции маятника относительно оси вращения J0.
СМОТРЕТЬ РЕШЕНИЕ

54.7 Тело, подвешенное на двух вертикальных нитях длины l каждая, расстояние между которыми 2b, закручивается вокруг вертикальной оси, лежащей в плоскости нитей и равноудаленной от них (бифилярный подвес). Радиус инерции тела относительно оси вращения ρ. Найти период малых колебаний.
СМОТРЕТЬ РЕШЕНИЕ

54.8 Круглый обруч подвешен к трем неподвижным точкам тремя одинаковыми нерастяжимыми нитями длины l, так, что плоскость обруча горизонтальна. Нити в положении равновесия обруча вертикальны и делят окружность обруча на три равные части. Найти период малых колебаний обруча вокруг оси, проходящей через центр обруча.
СМОТРЕТЬ РЕШЕНИЕ

54.9 Тяжелая квадратная платформа ABCD массы М подвешена на четырех упругих канатах, жесткости с каждый, к неподвижном точке O, отстоящей в положении равновесия системы на расстоянии l по вертикали от центра E платформы. Длина диагонали платформы a. Определить период вертикальных колебании системы.
СМОТРЕТЬ РЕШЕНИЕ

54.10 Уголок, составленный из тонких однородных стержней длин l и 2l с углом между стержнями 90°, может вращаться вокруг точки O. Определить период малых колебаний уголка около положения равновесия.
СМОТРЕТЬ РЕШЕНИЕ

54.11 Определить период малых свободных колебаний маятника массы М, ось вращения которого образует угол β с горизонтальной плоскостью. Момент инерции маятника относительно оси вращения J, расстояние центра масс от оси вращения s.
СМОТРЕТЬ РЕШЕНИЕ

54.12 В приборе для регистрации вертикальных колебаний фундаментов машин груз Q массы m, закрепленный на вертикальной пружине, коэффициент жесткости которой с1, шарнирно соединен со статически уравновешенной стрелкой, выполненной в виде ломаного рычага с моментом инерции J относительно оси вращения O и отжимаемой к равновесному положению горизонтальной пружиной с коэффициентом жесткости с2. Определить период свободных колебаний стрелки около ее вертикального равновесного положения, если OA = а и OB = b. Размерами груза и влиянием первоначального натяжения пружины пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

54.13 Амортизационное устройство может быть схематизировано в виде материальной точки массы m, соединенной n пружинами жесткости с с вершинами правильного многоугольника. Длина каждой пружины в ненапряженном состоянии a, радиус окружности, описанной около многоугольника b. Определить частоту горизонтальных свободных колебаний системы, расположенной в горизонтальной плоскости.
СМОТРЕТЬ РЕШЕНИЕ

54.14 В предыдущей задаче определить частоту колебаний, перпендикулярных плоскости многоугольника. Массами пружин пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

54.15 Определить частоту малых вертикальных колебаний материальной точки E, входящей в состав системы, изображенной на рисунке. Масса материальной точки т. Расстояния AB = BC и DE = EF жесткости пружин с1, с2, с3, с4 заданы. Бруски AC и DF считать жесткими, не имеющими массы.
СМОТРЕТЬ РЕШЕНИЕ

54.16 На нерастяжимой нити длины 4а находятся три груза, массы которых соответственно равны m, М, m. Нить симметрично подвешена за концы так, что ее начальный и конечный участки образуют углы сс с вертикалью, а средние участки углы р. Груз М совершает малые вертикальные колебания. Определить частоту свободных вертикальных колебаний груза М.
СМОТРЕТЬ РЕШЕНИЕ

54.17 Вертикальный сейсмограф Б. Б. Голицина состоит из рамки AОВ, на которой укреплен груз веса Q. Рамка может врашаться вокруг горнзонтальной оси O. В точке В рамки, отстоящей от O на расстоянии a, прикреплена пружина жесткости c, работающая на растяжение. В положении равновесия стержень OA горизонтален. Момент инерции рамки и груза относительно O равен J, высота рамки b. Пренебрегая массой пружины и считая, что центр масс груза и рамки находится в точке A, отстоящей от O на расстоянии l, определить частоту малых колебаний маятника.
СМОТРЕТЬ РЕШЕНИЕ

54.18 В вибрографе, предназначенном для записи колебаний фундаментов, частей машин и т.п., маятник веса Q удерживается под углом α к вертикали с помощью спиральной пружины жесткости k; момент инерции маятника относительно оси вращения O равен J, расстояние центра масс маятника от оси вращения s. Определить период свободных колебаний вибрографа.
СМОТРЕТЬ РЕШЕНИЕ

54.19 В вибрографе для записи горизонтальных колебаний маятник OA, состоящий из рычага и груза, может качаться вокруг горизонтальной оси O около вертикального положения устойчивого равновесия, удерживаясь в этом положении собственным весом и спиральной пружиной. Зная максимальный статический момент силы тяжести маятника Qb= 45 Н*см, момент инерции относительно оси O J=0,3 кг*см2 и жесткость при кручении пружины k=45 Н*см, определить период собственных колебаний маятника при малых углах отклонения.
СМОТРЕТЬ РЕШЕНИЕ

54.20 Найти, при каком условии верхнее вертикальное положение равновесия маятника является устойчивым, если свободному вращению маятника препятствует спиральная пружина жесткости k, установленная так, что при верхнем вертикальном положении маятника она не напряжена. Вес маятника P. Расстояние от центра масс маятника до точки подвеса равно b. Найти также период малых колебаний маятника, если его момент инерции относительно оси вращения равен J0.
СМОТРЕТЬ РЕШЕНИЕ

54.21 Показать, что при с < Ра маятник, рассмотренный в предыдущей задаче, будет иметь не менее трех положений равновесия. Найти также период малых колебаний.
СМОТРЕТЬ РЕШЕНИЕ

54.22 Стержень OA маятника при помощи шатуна AB соединен с маленькой стальной рессорой EB жесткости k. В ненапряженном состоянии рессора занимает положение EB1; известно, что к рессоре нужно приложить силу F0, направленную по OB, чтобы привести ее в положение EB0, соответствующее равновесию маятника; OA=AB=b; массой стержней пренебрегаем; расстояние центра масс маятника от оси вращения OC=l; вес маятника Q. С целью достижения наилучшего изохронизма (независимость периода колебаний от угла первоначального отклонения) система отрегулирована так, чтобы в уравнении движения маятника φ = f(φ) = -βφ + ... первый из отброшенных членов был порядка φ5. Установить, какая зависимость должна для этого иметь место между постоянными Q, F0, k, b, l, и вычислить период малых колебаний маятника.
СМОТРЕТЬ РЕШЕНИЕ

54.23 Показать, что при условии предыдущей задачи увеличение периода колебаний при отклонениях маятника от положения равновесия на угол φ0 = 45° не превышает 0,4 %. Каково будет при этих условиях изменение периода простого маятника?
СМОТРЕТЬ РЕШЕНИЕ

54.24 При условиях задачи 54.22 маятник отрегулирован так, что Ql = 2aF0. Найти период малых колебаний маятника при отклонении его от положения равновесия на угол φ
СМОТРЕТЬ РЕШЕНИЕ

54.25 В маятнике паллографа груз M маятника повешен на стержне, свободно проходящем через вращающийся цилиндрик O и шарнирно соединенном в точке А с коромыслом АО и качающимся вокруг неподвижной оси O1. При каком условии вертикальное положение стержня ОМ маятника будет положением устойчивого равновесия? Найти период малых колебаний маятника около этого положения. Размерами груза и массой стержней пренебречь. (Размеры стержней указаны на рисунке к задаче 53.16.)
СМОТРЕТЬ РЕШЕНИЕ

54.26 Пренебрегая массой стержней найти период малых колебаний маятника, изображенного на рисунке. Центр масс груза находится на продолжении шатуна шарнирного чстырехзвенника ОАВО1 в точке C. В положении равновесия стержни OA и BC вертикальны, стержень 01В горизонтален: OA = AB = a; AC = s.
СМОТРЕТЬ РЕШЕНИЕ

54.27 Определить период колебания груза Р массы m, подвешенного на пружине с закрепленным верхним концом если коэффициент жесткости пружины равен c, масса пружины m0. Принять, что отношение отклонений двух точек пружины от своих положений равновесия равно отношению соответствующих расстояний этих точек до закрепленного конца пружины.
СМОТРЕТЬ РЕШЕНИЕ

54.28 На нижнем конце вертикального цилиндрического упругого стержня с закрепленным верхним концом прикреплен в своем центре горизонтальный диск с моментом инерции J относительно вертикальной оси, проходящей через центр; момент инерции стержня относительно его оси равен J0; коэффициент жесткости стержня при закручивании, т. е. момент, необходимый для закручивания нижнего конца стержня на один радиан, равен c. Определить период колебаний системы.
СМОТРЕТЬ РЕШЕНИЕ

54.29 Груз веса Q укреплен посредине балки, свободно опертой на концах; длина балки l, момент инерции поперечного сечения J, модуль упругости материала E. Определить, пренебрегая массой балки, число колебаний, совершаемых грузом в минуту.
СМОТРЕТЬ РЕШЕНИЕ

54.30 Двутавровая балка с моментом инерции сечения J=180 см4, длины l = 4 м лежит на двух одинаковых упругих опорных пружинах, жесткость которых c= 1,5 кН/см, и несет посредине груз веса Q = 2 кН. Пренебрегая весом балки, определить период свободных колебаний системы. Модуль упругости материала балки E = 2*104 кН/см2 kH/см2
СМОТРЕТЬ РЕШЕНИЕ

54.31 В конце В горизонтального стержня AB длины l, заделанного другим концом, находится груз веса Q, совершающий колебания с периодом Т. Момент инерции сечения стержня относительно центральной оси сечения, перпендикулярной плоскости колебаний, равен J. Найти модуль упругости материала стержня.
СМОТРЕТЬ РЕШЕНИЕ

54.32 Диск массы M и радиуса r может катиться без скольжения по горизонтальной прямой. К диску жестко прикреплен стержень длины l, на конце которого находится точечная масса m. Найти период малых колебаний системы. Массой стержня пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

54.33 На шероховатый круглый полуцилиндр радиуса R положен призматический брусок массы M с прямоугольным поперечным сечением. Продольная ось бруска перпендикулярна оси цилиндра. Длина бруска 2l, высота 2a. Концы бруска соединены с полом пружинами одинаковой жесткости c. Предполагая, что брусок не скользит по цилиндру, найти период его малых колебаний. Момент инерции бруска относительно поперечной горизонтальной оси, проходящей через центр масс, равен J0.
СМОТРЕТЬ РЕШЕНИЕ

54.34 Острота амплитудно-частотной характеристики системы с одной степенью свободы при действии силы трения, пропорциональной скорости, характеризуется половинной шириной амплитудно-частотной характеристики. Половинная ширина амплитудно-частотной характеристики измеряется разностью между двумя частотами, для которых амплитуда колебаний равна половине амплитуды, сответствуюшей резонансу. Выразить половинную ширину амплитудно-частотной характеристики Д через коэффициент расстройки частот z = ω/k и через приведенный коэффициент затухания σ = n/k. Дать приближенную формулу для случая σ<<1 (со —частота вынуждающей силы, k—частота собственных колебаний; при резонансе z= 1).
СМОТРЕТЬ РЕШЕНИЕ

54.35 В вибрографе, употребляемом для записи вертикальных колебаний, стержень OA, соединенный с пишущим пером прибора, может вращаться вокруг горизонтальной оси O. Стержень OA на конце A несет груз Q и удерживается в горизонтальном положении равновесия спиральной пружиной. Определить относительное движение стержня OA, если виброграф укреплен на фундаменте, совершающем вертикальные колебания по закону z=0,2 sin 25t см. Жесткость при кручении пружины c=1 Н*см, момент инерции стержня OA с грузом Q относительно O равен J=4 кг*см2, Qa=100 Н*см. Собственными колебаниями стержня пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

54.36 В вибрографе, описанном в задаче 54.35, стержень снабжен электромагнитным тормозом в виде алюминиевой пластины, колеблющейся между полюсами неподвижно закрепленных магнитов. Возникающие в пластине вихревые токи создают торможение, пропорциональное первой степени скорости движения пластины и доведенное до границы апериодичности. Определить вынужденные колебания стрелки прибора, если последний закреплен на фундаменте, совершающем вертикальные колебания по закону z = h sin pt.
СМОТРЕТЬ РЕШЕНИЕ

54.37 Вертикальный двигатель массы M1 закреплен на фундаменте, имеющем площадь основания S; удельная жесткость грунта равна λ. Длина кривошипа двигателя r, длина шатуна l, угловая скорость вала ω, масса поршня и неуравновешенных частей, совершающих возвратно-поступательное движение, равна М2, масса фундамента М3; кривошип считать уравновешенным при помощи противовеса. Массой шатуна пренебречь. Определить вынужденные колебания фундамента.
СМОТРЕТЬ РЕШЕНИЕ

54.38 Рассчитать вес фундамента под вертикальный двигатель массы М = 104 кг таким образом, чтобы амплитуда вынужденных вертикальных колебаний фундамента не превосходила 0,25 мм. Площадь основания фундамента S=100 м2, удельная жесткость грунта, находящегося под фундаментом, λ = 490 кН/м3. Длина кривошипа двигателя r = 30 см, длина шатуна l=180 см, угловая скорость вала ω = 8п рад/с, масса поршня и других неуравновешенных частей, совершающих возвратно-поступательное движение, m = 250 кг, кривошип считать уравновешенным при помощи противовеса. Массой шатуна пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

54.39 Электромотор массы М = 1200 кг установлен на свободных концах двух горизонтальных параллельных балок, заделанных вторыми концами в стену. Расстояние от оси электромотора до стены l= 1,5 м. Якорь электромотора вращается со скоростью n = 50п рад/с, масса якоря m = 200 кг центр масс его отстоит от оси вала на расстоянии r = 0,05 мм. Модуль упругости мягкой стали, из которой сделаны балки, E=19,6*10^7 Н/см2. Определить момент инерции площади поперечного сечения так, чтобы амплитуда вынужденных колебаний не превосходила 0,5 мм. Весом балки пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

54.40 Кулачковый механизм для привода клапана может быть схематизирован в виде массы m, прикрепленной с одной стороны с помощью пружины жесткости с к неподвижной точке и получающей с другой стороны через пружину жесткости c1 движение от поступательно движущегося кулачка, профиль которого таков, что вертикальное смещение определяется формулами x1= а [1 — cos ωt] при 0≤t≤2п/ω, х2=0 при t>2п/ω. Определить движение массы m
СМОТРЕТЬ РЕШЕНИЕ

54.41 Для записи крутильных колебаний употребляется торсиограф, состоящий из легкого алюминиевого шкива A, заклиненного на валу В и тяжелого маховичка D, который может свободно вращаться относительно вала B. Вал связан с маховичком D спиральной пружиной жесткости c. Вал В движется по закону φ = ω + φ0 sin ωt (равномерное вращение с наложением гармонических колебаний). Момент инерции маховичка относительно оси вращения J. Исследовать вынужденные колебания маховичка торсиографа.
СМОТРЕТЬ РЕШЕНИЕ

54.42 Для гашения колебаний коленчатого вала авиационного мотора в противовесе коленчатого вала делается желоб в форме дуги окружности радиуса r с центром, смещенным на AB = l от оси вращения; по желобу может свободно двигаться дополнительный противовес, схематизируемый в виде материальной точки. Угловая скорость вращения вала равна ω. Пренебрегая влиянием силы тяжести, определить частоту малых колебаний дополнительного противовеса.
СМОТРЕТЬ РЕШЕНИЕ

54.43 К грузу веса P, висящему на пружине жесткости с в начальный момент времени приложена постоянная сила F, действие ко горой прекращается по прошествии времени t. Определить движение груза.
СМОТРЕТЬ РЕШЕНИЕ

54.44 Определить максимальное отклонение от положения равновесия системы, описанной в предыдущей задаче, в случае действия сил различной продолжительиости: 1) t = 0, lim Ft =S 2) t = T/4, 3) t= T/2, где Т— период свободных колебаний системы.
СМОТРЕТЬ РЕШЕНИЕ

54.45 Найти закон движения маятника, состоящего из материальной точки, висящей на нерастяжимой нити длины l. Точка подвеса маятника движется по заданному закону ε(t) по горизонтальной прямой.
СМОТРЕТЬ РЕШЕНИЕ

54.46 На материальную точку массы m, подвешенную на пружине жесткости c, действует возмущающая сила, заданная условиями: F=0 при t <0; F=t/τF0 при 0≤t≤τ F=F0 при t >τ. Определить движение точки и найти амплитуду колебаний при t > т.
СМОТРЕТЬ РЕШЕНИЕ

54.47 На груз массы m, висящий на пружине жесткости c, действует возмущающая сила, изменяющаяся по закону Q(t) = F|sin ωt|. Определить колебания системы, имеющие частоту возмущающей силы.
СМОТРЕТЬ РЕШЕНИЕ

54.48 Определить критическую угловую скорость (относительно поперечных колебаний) легкого вала, несущего посредине диск веса Р. Рассмотреть следующие случаи: 1) вал на обоих концах опирается па длинные подшипники (концы можно считать заделанными); 2) на одном конце вал опирается на длинный подшипник (конец заделан), а на другом —на короткий подшипник (конец оперт). Жесткость вала на изгиб EJ, длина вала l.
СМОТРЕТЬ РЕШЕНИЕ

54.49 Определить критическую скорость вращения легкого вала длины l, если вал лежит на двух коротких подшипниках и на выступающем конце длиной а несет диск веса Р. Жесткость вала на изгиб EJ.
СМОТРЕТЬ РЕШЕНИЕ

54.50 Определить критическую скорость вращения тяжелого вала, лежащего одним концом в коротком подшипнике, а другим— в длинном; длина вала l, жесткость вала на изгиб EJ, вес единицы длины вала q.
СМОТРЕТЬ РЕШЕНИЕ