Решение задач » Решебники онлайн » Решебники по теоретической механике онлайн » Решебник Мещерский онлайн (ГДЗ Мещерский 1986 г, решение задач)
Решебник Мещерский онлайн

Малые колебания систем с несколькими степенями свободы
55.1 Для экспериментального исследования процесса регулирования гидравлических турбин сконструирована установка, состоящая из турбины, ротор которой имеет момент инерции относительно оси вращения J1 = 50 кг*см2, маховика с моментом инерции J2 = 1500 кг*см2 и упругого вала C, соединяющего ротор турбины с маховиком; вал имеет длину l= 1552 мм, диаметр d = = 25,4 мм, модуль сдвига материала вала 8800 кН/см. Пренебрегая массой вала и скручиванием его толстых участков, найти то сечение mn вала, которое при свободных колебаниях данной системы остается неподвижным (узловое сечение), а также вычислить период T свободных колебаний системы.
СМОТРЕТЬ РЕШЕНИЕ

55.2 Определить частоты свободных крутильных колебаний системы, состоящей из вала, закрепленного на одном конце, с насаженными посредине и на другом конце однородными дисками. Момент инерции каждого диска относительно оси вала J; жесткость на кручение участков вала k1=k2=k. Массой вала пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.3 Определить частоты главных крутильных колебаний системы, состоящей из вала с насаженными на него тремя одинаковыми дисками. Два диска закреплены на концах вала, а третий — посредине. Момент инерции каждого диска относительно оси вала J; жесткость на кручение участков вала k1=k2=k. Массой вала пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.4 Два одинаковых маятника длины l и массы m каждый соединены на уровне h упругой пружиной жесткости k, прикрепленной концами к стержням маятников. Определить малые колебания системы в плоскости равновесного положения маятников, после того как одному из маятников сообщено отклонение на угол α от положения равновесия; начальные скорости маятников равны нулю. Массами стержней маятников и массой пружины пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.5 Диск массы M может катиться без скольжения по прямолинейному рельсу. К центру диска шарнирно прикреплен стержень длины l, на конце которого находится точечный груз массы m. Найти период малых колебаний маятника. Массой стержня пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.6 Заменяя в предыдущей задаче прямолинейный рельс дугой окружности радиуса R, найти частоты малых колебаний рассматриваемой системы.
СМОТРЕТЬ РЕШЕНИЕ

55.7 Маятник состоит из ползуна массы M, скользящего без трения по горизонтальной плоскости, и шарика массы m, соединенного с ползуном стержнем длины l, могущим вращаться вокруг оси, связанной с ползуном. К ползуну присоединена пружина жесткости k, другой конец которой закреплен неподвижно. Определить частоты малых колебаний системы.
СМОТРЕТЬ РЕШЕНИЕ

55.8 Два одинаковых физических маятника подвешены на параллельных горизонтальных осях, расположенных в одной горизонтальной плоскости, и связаны упругой пружиной, длина которой в ненапряженном состоянии равна расстоянию между осями маятников. Пренебрегая сопротивлением движению и массой пружины, определить частоты и отношения амплитуд главных колебаний системы при малых углах отклонения от равновесного положения. Вес каждого маятника P; радиус инерции его относительно оси, проходящей через центр масс параллельно оси подвеса, ρ; жесткость пружины k, расстояния от центра масс маятника и от точки прикрепления пружины к маятникам до оси подвеса равны соответственно l и h. (См. рисунок к задаче 55.4.)
СМОТРЕТЬ РЕШЕНИЕ

55.9 Однородный стержень AB длины L подвешен при помощи нити длины l=0,5L к неподвижной точке. Пренебрегая массой нити, определить частоты главных колебаний системы и найти отношение отклонений стержня и нити от вертикали при первом и втором главных колебаниях.
СМОТРЕТЬ РЕШЕНИЕ

55.10 Предполагая в предыдущей задаче, что длина нити весьма велика по сравнению с длиной стержня, и пренебрегая квадратом отношения L/l, определить отношение низшей частоты свободных колебаний системы к частоте колебаний математического маятника длины l.
СМОТРЕТЬ РЕШЕНИЕ

55.11 Считая в задаче 55.9, что длина нити весьма мала по сравнению с длиной стержня, и пренебрегая квадратом отношения l/L, определить отношение низшей частоты свободных колебаний системы к частоте колебаний физического маятника, если ось вращения поместить в конце стержня.
СМОТРЕТЬ РЕШЕНИЕ

55.12 Определить частоты главных колебаний двойного математического маятника при условии, что массы грузов M1 и M2 соответственно равны m1 и m2, OM1=l1, M1M2=l2, а к грузу M1 присоединена пружина, массой которой можно пренебречь. Длина пружины в ненапряженном состоянии равна l0, жесткость пружины k.
СМОТРЕТЬ РЕШЕНИЕ

55.13 Двойной физический маятник состоит из однородного прямолинейного стержня O1O2 длины 2a и веса P1, вращающегося вокруг неподвижной горизонтальной оси O1, и из однородного прямолинейного стержня AB веса P2, шарнирно соединенного в своем центре масс с концом O2 первого стержня. Определить движение системы, если в начальный момент стержень O1O2 отклонен на угол φ0 от вертикали, а стержень AB занимает вертикальное положение и имеет начальную угловую скорость ω0.
СМОТРЕТЬ РЕШЕНИЕ

55.14 Стержень AB веса P подвешен за концы A и B к потолку на двух одинаковых нерастяжимых нитях длины a. К стержню AB подвешена на двух одинаковых нерастяжимых нитях длины b балка CD веса Q. Предполагая, что колебания происходят в вертикальной плоскости, найти частоты главных колебаний. Массами нитей пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.15 Исследовать колебания железнодорожного вагона в его средней вертикальной плоскости, если вес подрессоренной части вагона Q, расстояния центра масс от вертикальных плоскостей, проведенных через оси, l1=l2=l; радиус инерции относительно центральной оси, параллельной осям вагона, ρ; жесткость рессор для обеих осей одинакова: k1=k2=k.
СМОТРЕТЬ РЕШЕНИЕ

55.16 Исследовать малые свободные колебания груженой платформы веса P, опирающейся в точках A и B на две рессоры одинаковой жесткости k. Центр масс C платформы с грузом находится на прямой AB, причем AC=a и CB=b. Платформа выведена из положения равновесия путем сообщения центру масс начальной скорости v0, направленной вертикально вниз без начального отклонения. Массы рессор и силы трения не учитывать. Момент инерции платформы относительно горизонтальной поперечной оси, проходящей через центр масс платформы, равен JC=0,1(a2+b2)P/g. Колебания происходят в вертикальной плоскости. За обобщенные координаты принять: y — отклонение центра масс от положения равновесия вниз, ψ — угол поворота платформы вокруг центра масс.
СМОТРЕТЬ РЕШЕНИЕ

55.17 Платформа тележки опирается в точках А и В на две рессоры одинаковой жесткости c, расстояние между осями рессор AB = l; центр масс С платформы расположен на прямой AB, являющейся осью симметрии платформы, на расстоянии AC = a =l/3 от точки A (см. рисунок к задаче 55.16). Радиус инерции платформы относительно оси, проходящей через ее центр масс перпендикулярно прямой А В и лежащей в плоскости платформы, принять равным 0,2l; вес платформы равен Q. Найти малые колебания платформы, возникающие под действием удара, приложенного в центре масс платформы перпендикулярно ее плоскости, удара равен S.
СМОТРЕТЬ РЕШЕНИЕ

55.18 Две одинаковые материальные точки М1 и М2 массы m каждая прикреплены симметрично на равных расстояниях от концов к натянутой нити, имеющей длину 2(а + Ь); натяжение нити равно p. Определить частоты главных колебаний и найти главные координаты.
СМОТРЕТЬ РЕШЕНИЕ

55.19 Определить частоты малых колебаний тяжелой материальной точки, колеблющейся около положения равновесия на гладкой поверхности, обращенной вогнутой стороной кверху; главные радиусы кривизны поверхности в точке, отвечающей положению равновесия, равны ρ1 и ρ2.
СМОТРЕТЬ РЕШЕНИЕ

55.20 Определить частоты малых колебаний тяжелой материальной точки около ее положения равновесия, совпадающего с наиболее низкой точкой поверхности, вращающейся с постоянной угловой скоростью (о вокруг вертикальной оси, проходящей через эту точку. Главные радиусы кривизны поверхности в ее нижней точке p1 и р2.
СМОТРЕТЬ РЕШЕНИЕ

55.21 Круглый однородный диск радиуса r и массы M связан шарниром со стержнем OA длины l, могущим поворачиваться около неподвижной горизонтальной оси. На окружности диска закреплена материальная точка B массы m. Определить частоты свободных колебаний системы. Массой стержня пренебречь. Диск может вращаться в плоскости колебаний стержня OA.
СМОТРЕТЬ РЕШЕНИЕ

55.22 На проволочную окружность радиуса R, плоскость которой горизонтальна, надеты два одинаковых колечка, соединенные пружиной жесткости c, имеющей в ненапряженном состоянии длину l0. Определить движение колечек, приняв их за материальные точки массы т. Принять, что в начальный момент φ1= 0, а колечко В отклонено от своего равновесного положения на величину дуги, равную 2Rβ. Начальные скорости колечек равны нулю.
СМОТРЕТЬ РЕШЕНИЕ

55.23 Определить малые колебания математического маятника длины l и веса Р2, подвешенного к вертикально движущемуся ползуну А веса Р1, прикрепленному к пружине жесткости c. Ползун при своем движении испытывает сопротивление, пропорциональное его скорости (b — коэффициент пропорциональности). Найти условия, при которых в случае b = 0 главные частоты данной системы будут равны между собой.
СМОТРЕТЬ РЕШЕНИЕ

55.24 Два одинаковых жестких стержня длины R имеют общую точку подвеса O. Стержни могут вращаться в вертикальной плоскости вокруг точки подвеса независимо друг от друга. К концам стержней прикреплены два одинаковых груза А и В массы т каждый, соединенные между собой пружиной жесткости c. Длина пружины в состоянии устойчивого равновесия системы равна l. Пренебрегая массой стержней, найти частоты главных колебаний около устойчивого положения равновесия грузов.
СМОТРЕТЬ РЕШЕНИЕ

55.25 К движущейся по заданному закону ξ=ξ(t) платформе подвешена на пружине жесткости c1 механическая система, состоящая из массы m1, к которой жестко присоединен в точке B поршень демпфера. Камера демпфера, масса которого равна m2, опирается на пружину жесткости c2, противоположный конец которой прикреплен к поршню. Вязкое трение в демпфере пропорционально относительной скорости поршня и камеры; ρ — коэффициент сопротивления. Составить уравнения движения системы.
СМОТРЕТЬ РЕШЕНИЕ

55.26. Тяжелый однородный стержень длины l и массы m1 нижним концом опирается на шарнир и удерживается в вертикальном положении с помощью пружины жесткости c. К точке стержня, отстоящей от шарнира на расстоянии a, подвешен на нити длины r груз М массы m2. При вертикальном положении стержня пружина находится в ненапряженном состоянии и расположена горизонтально. При какой жесткости пружины стержень и груз могуг совершать малые колебания около вертикального положения? Найти уравнение частот этих колебаний. Массой нити пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.27. Однородная балка AB длины l, массы m1 опирается в точке В на пружину жесткости c, а в точке А на цилиндрический шарнир. В точке E балки на расстоянии а от шарнира А на стержне длины r с помощью шарнира подвешен груз М массы m2. В положении равновесия балка AB горизонтальна. Найти уравнение малых колебаний балки и груза. Массой стержня пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.28 Определить частоты свободных крутильных колебаний системы, состоящей из двух валов, соединенных зубчатой передачей. Моменты инерции масс, насаженных на валы, и моменты инерции зубчатых колес относительно оси валов имеют величины J1 =875*103 кг*см2, J2 = 560*103 кг*см2, i1 =3020 кг*см2, i2 = 105 кг*см2, передаточное число k = z1/z2 = 5; жесткости валов при кручении c1 = 316X 107 Н*см, с2 = 115*107 Н*см; массами валов пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.29 Определить, пренебрегая массой зубчатых колес, частоту свободных крутильных колебаний системы, описанной в предыдущей задаче.
СМОТРЕТЬ РЕШЕНИЕ

55.30 Найти частоты и формы главных поперечных колебании балки длины l, свободно лежащей на двух опорах и нагруженной в точках x =1/3 и x=2/3l двумя равными грузами веса Q. Момент инерции поперечного сечения балки J, модуль упругости E. Массой балки пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.31 Найти частоты и формы главных поперечных колебаний балки длины l, опертой по концам и несущей два груза Q1 = Q и Q2 = 0,5Q, равноудаленных от опор на расстояние l/3. Массой балки пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.32 Найти частоты главных колебаний двух одинаковых грузов Q, закрепленных на концах горизонтальной консольной балки на равных расстояниях l от ее опор. Балка длины 3l свободно лежит на двух опорах, отстоящих друг от друга на расстоянии l, момент инерции поперечного сечения балки J; модуль упругости E. Массой балки пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.33 Однородная прямоугольная пластинка массы m закреплена в конце А балки длины l, другой конец которой заделан неподвижно. Система находится в горизонтальной плоскости и совершает в этой плоскости свободные колебания около положения равновесия. Определить частоты и формы этих колебаний, если a=0,2l, b = 0,1l. Массой балки пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.34 К первому из двух первоначально неподвижных дисков, соединенных упругим валом жесткости c, внезапно приложен постоянный вращающий момент M; моменты инерции дисков J. Пренебрегая массой вала, определитьпоследующее движение системы.
СМОТРЕТЬ РЕШЕНИЕ

55.35 Двухъярусная шарнирно-стержневая система удерживается в вертикальном положении тремя пружинами, как это показано на рисунке. Стержни абсолютна жесткие, однородные: вес на длину l равен G. Полагая коэффициенты жесткости пружин равными c1 = с2 = 10G/l, определить устойчивость равновесия системы, а также частоты и формы f1 и f2 главных колебаний системы. Массой пружин пренебречь: l1=l2 = l.
СМОТРЕТЬ РЕШЕНИЕ

55.36 Груз массы М укреплен на вершине стойки, жестко связанной с балкой AB, свободно лежащей на двух опорах. Полагая, что момент инерции поперечного сечения J, а модули упругости E балки и стоики одинаковы, определить частоты главных изгибных колебаний системы. Массами балки и стойки пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

55.37 Фундамент машины массы m1= 102* 102 кг, установленный на упругом грунте, совершает вертикальные вынужденные колебания под действием вертикальной возмущающей силы, меняющейся по закону F = 98 sin ωt кН. С целью устранения резонансных колебаний, обнаруживающихся при угловой скорости вала машины ω = 100 рад/с, на фундаменте установлен на упругих пружинах гаситель в виде тяжелой рамы. Подобрать массу рамы m и суммарную жесткость пружин с2 гасителя так, чтобы амплитуда вынужденных колебаний фундамента при вышеуказанной скорости вала обратилась в нуль, а амплитуда колебаний гасителя не превосходила А=2 мм.
СМОТРЕТЬ РЕШЕНИЕ

55.38 Определить уравнения вынужденных колебаний системы дисков, описанной в задаче 55.2, при действии на средний диск возмущающего момента M=M0 sin pt.
СМОТРЕТЬ РЕШЕНИЕ

55.39 Электромотор веса Q1 закреплен на упругом бетонном фундаменте (в виде сплошного параллелепипеда) веса Q2 с коэффициентом жесткости с2, установленном на жестком грунте. Ротор веса Р насажен на упругий горизонтальный вал с коэффициентом жесткости при изгибе c1; эксцентриситет ротора относительно вала r; угловая скорость вала ω. Определить вынужденные вертикальные колебания статора электромотора. Учесть влияние массы фундамента путем присоединения одной трети его массы к массе статора.
СМОТРЕТЬ РЕШЕНИЕ

55.40 В точке А балки AB (см. задачу 55.14) приложена сила F = F0 sin pt (Fо и p - постоянные), составляющая все время с нитью OA прямой угол и расположенная в плоскости движения балки. Какова должна быть длина b нитей, на которых подвешена балка CD, чтобы амплитуда вынужденных колебаний балки AB равнялась нулю?
СМОТРЕТЬ РЕШЕНИЕ

55.41 Для поглощения крутильных колебаний к одной из колеблющихся масс системы прикрепляется маятник. На рисунке схематически изображена система, состоящая из двух масс I и II, вращающихся с постоянной угловой скоростью ω. Ко второй массе прикреплен маятник. Моменты инерции масс относительно оси вращения J1 и J2; момент инерции маятника относительно оси, параллельной оси вращения системы и проходящей через центр масс маятника, J3. Расстояние между осью вращения системы и осью подвеса маятника OA=l; расстояние между осью подвеса и параллельной осью, проходящей через центр масс маятника, AC=a; масса маятника m. Коэффициент упругости (жесткость при кручении) участка вала между массами k1. Ко второй массе приложен внешний момент M=M0 sin ωt. Написать дифференциальные уравнения движения обеих масс системы и маятника. При составлении выражения для потенциальной энергии системы пренебречь потенциальной энергией маятника в поле силы тяжести.
СМОТРЕТЬ РЕШЕНИЕ

55.42 Бак, имеющий форму куба, опирается четырьмя нижними углами на четыре одинаковые пружины; длина стороны куба 2а. Жесткости пружин в направлении осей, параллельных сторонам куба, равны сх, су, cz; момент инерции куба относительна главных центральных осей J. Составить уравнения малых колебаний и определить их частоты в случае сх = су. Масса бака равна М
СМОТРЕТЬ РЕШЕНИЕ

55.43 Однородная горизонтальная прямоугольная пластина со сторонами а и b опирается своими углами на четыре одинаковые пружины жесткости c; масса пластины М. Определить частоты свободных колебаний.
СМОТРЕТЬ РЕШЕНИЕ

55.44 Три железнодорожных груженых вагона веса Q1, Q2 и Q3 сцеплены между собой. Жесткости сцепок равны k1 и k2. Найти частоты главных колебаний системы.
СМОТРЕТЬ РЕШЕНИЕ

55.45 При условиях предыдущей задачи найти уравнения движения вагонов и построить формы главных колебаний для случая вагонов равного веса Q1 = Q2 = Q3 = Q, соединенных сцепками одинаковой жесткости с1= с2 = c. В начальный момент два вагона находятся в положении равновесия, а крайний правый вагон отклонен на х0 от положения равновесия.
СМОТРЕТЬ РЕШЕНИЕ

55.46 Найти частоты и формы главных колебаний системы, состоящей из трех одинаковых масс m, закрепленных на балке на одинаковых расстояниях друг от друга и от опор. Балку считать свободно положенной на опоры; длина балки l, момент инерции поперечного сечения J, модуль упругости E.
СМОТРЕТЬ РЕШЕНИЕ

55.47 Система n одинаковых масс m, соединенных пружинами жесткости c, образует механический фильтр для продольных колебаний. Считая заданным закон поступательного движения левой массы x = x0sinωt, показать, что система является фильтром низких частот, т. е. что после перехода частоты ω через определенную границу амплитуды вынужденных колебаний отдельных масс изменяются в зависимости от номера массы по экспоненциальному закону, а до перехода - по гармоническому.
СМОТРЕТЬ РЕШЕНИЕ

55.48 Фильтр крутильных колебаний схематизируется в виде длинного вала с насаженными на него дисками. Считая заданным закон движения левого диска в форме θ = θ0 sin ωt, определить вынужденные колебания системы и вычислить амплитуды колебаний отдельных дисков. Моменты инерции дисков J, жесткости участков вала между дисками одинаковы и равны c. Исследовать полученное решение и показать, что система является фильтром низких частот.
СМОТРЕТЬ РЕШЕНИЕ

55.49 Механическая система, образующая полосовой фильтр для продольных колебаний, состоит из звеньев, каждое из которых образовано массой m, соединенной с массой следующего звена пружиной жесткости c. Параллельно с этой пружиной к массе присоединена пружина жесткости c1, связывающая массу т с неподвижной точкой. Закон продольных колебаний левой массы x = x0 sin ωt задан. Показать, что при значениях ω, лежащих в определенных границах, амплитуды колебаний отдельных масс изменяются с расстоянием по гармоническому закону. Найти соответствующие граничные частоты.
СМОТРЕТЬ РЕШЕНИЕ

55.50 Система большого числа масс m, насаженных на расстоянии а друг от друга на струну АB, натянутую с усилием Т, и поддерживаемых пружинами жесткости c, является полосовым механическим фильтром поперечных колебаний. Вычислить частоты, отвечающие границам полосы пропускания.
СМОТРЕТЬ РЕШЕНИЕ

55.51 Нить длины nl подвешена вертикально за один конец и нагружена на равных расстояниях а друг от друга n материальными точками с массами m. Составить уравнения движения. Найти для n = 3 частоты поперечных колебаний нити.
СМОТРЕТЬ РЕШЕНИЕ

55.52 Определить частоты свободных поперечных колебаний натянутой нити с закрепленными концами, несущей на себе n масс m, отстоящих друг от друга на расстояниях l Натяжение нити Р.
СМОТРЕТЬ РЕШЕНИЕ
Устойчивость движения
56.1 Двойной маятник, образованный двумя стержнями длины l и материальными точками с массами m, подвешен на горизонтальной оси, вращающейся с постоянной угловой скоростью ω вокруг оси z. Исследовать устойчивость вертикального положения равновесия маятника. Массой стержней пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

56.2 Тяжелый шарик находится в полости гладкой трубки, изогнутой по эллипсу x2/a2 + z2/c2 = 1 и вращающейся вокруг вертикальной оси Oz с постоянной угловой скоростью ω (ось Оz направлена вниз). Определить положения относительного равновесия шарика и исследовать их устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

56.3 Тяжелый шарик находится в полости гладкой трубки, изогнутой по параболе x2=2pz и вращающейся с постоянной угловой скоростью ω вокруг оси Oz. (Положительное направление оси Oz — вверх.) Определить положение относительного равновесия шарика и исследовать его устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

56.4 Материальная точка может двигаться по гладкой плоской кривой, вращающейся вокруг вертикальной оси с угловой скоростью ω. Потенциальная энергия П (s) точки задана и зависит только от ее положения, определяемого дугой s, отсчитываемой вдоль привой, r(s)—расстояние точки от оси вращения. Найти условие устойчивости относительного положения равновесия точки.
СМОТРЕТЬ РЕШЕНИЕ

56.5 Показать, что материальная точка массы m под действием центральной силы притяжения F = ar^n (а = const, r - расстояние точки до притягивающего центра, n n целое число) может совершать движение по окружности с постоянной скоростью. Найти условие, при котором это движение устойчиво по отношению к координате r.
СМОТРЕТЬ РЕШЕНИЕ

56.6 Твердое тело свободно качается вокруг горизонтальной оси NT, вращающейся вокруг вертикальной оси Oz с угловой скоростью ω. Точка G — центр инерции тела; плоскость NTG является плоскостью симметрии... М -масса тела. Определить возможные положения относительного равновесия и исследовать их устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

56.7 Определить положения относительного равновесия маятника, подвешенного с помощью универсального шарнира O к вертикальной оси, вращающейся с постоянной угловой скоростью ω; маятник симметричен относительно своей продольной оси; A и C — его моменты инерции относительно главных центральных осей инерции ξ, η и ζ; h — расстояние центра тяжести маятника от шарнира. Исследовать устойчивость положений равновесия маятника и определить период колебаний около среднего положения равновесия.
СМОТРЕТЬ РЕШЕНИЕ

56.8 Вертикальная ось симметрии тонкого однородного круглого диска радиуса r и веса Q может свободно вращаться вокруг точки A. В точке В она удерживается двумя пружинами. Оси пружин горизонтальны и взаимно перпендикулярны, их жесткости соответственно равны с1 и с2, причем с2>С1. Пружины кренятся к оси диска на расстоянии L от нижней опоры; расстояние диска от нижней опоры l. Определить угловую скорость ω, которую нужно сообщить диску для обеспечения устойчивости вращения.
СМОТРЕТЬ РЕШЕНИЕ

56.9 Материальная точка M движется под действием силы тяжести по внутренней поверхности кругового цилиндра радиуса a, ось которого наклонена под углом α к вертикали. Исследовать устойчивость движения по нижней (φ=0) и верхней (φ=π) образующим. Определить период колебаний при движении по нижней образующей.
СМОТРЕТЬ РЕШЕНИЕ

56.10 Материальная точка вынуждена двигаться по внутренней гладкой поверхности тора, заданного параметрическими уравнениями x=ρ cosφ, y= ρ sinφ, z=b sinθ, ρ= a + b cosθ (ось z направлена вертикально вверх). Найти возможные движения точки, характеризующиеся постоянством угла θ, и исследовать их устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

56.11 Исследовать устойчивость движения обруча, равномерно катящегося с угловой скоростью ω по горизонтальной плоскости. Плоскость обруча вертикальна; радиус обруча a.
СМОТРЕТЬ РЕШЕНИЕ

56.12 Колесо с четырьмя симметрично расположенными спицами катится по шероховатой плоскости. Плоскость колеса вертикальна. Ободья колеса и спицы сделаны из тонкой тяжелой проволоки. Радиус колеса a, скорость центра его в исходном движении v. Исследовать устойчивость движения.
СМОТРЕТЬ РЕШЕНИЕ

56.13 Исследовать устойчивость движения однородного обруча радиуса a, вращающегося вокруг вертикального диаметра с угловой скоростью ω. Нижняя точка обруча соприкасается с горизонтальной плоскостью.
СМОТРЕТЬ РЕШЕНИЕ

56.14 Па материальную точку массы m, отклоненную от положения равновесия, действуют сила Fr по величине пропорциональная отклонению ОМ =r = √(x2 + y2) из этого положения и направленная к нему; сила Fφ и перпендикулярная первой (боковая сила), по величине тоже пропорциональная отклонению r: |Fr|=c11r, |Fv|=c12r. Исследовать методом малых колебаний устойчивость равновесного положения точки.
СМОТРЕТЬ РЕШЕНИЕ

56.15 При исследовании устойчивости движения точки в предыдущей задаче принять во внимание силы сопротивления, пропорциональные первой степени скорости Rx = -βx , Ry= -βy (β— коэффициент сопротивления).
СМОТРЕТЬ РЕШЕНИЕ

56.16 Если у стержня, описанного в задаче 56.14, жесткости на изгиб не равны, то реакции конца стержня, действующие на массу m, определяются выражениями Fx = —c11x + c12у, Fy=c21x - c22y. Выяснить методом малых колебаний условия устойчивости равновесия.
СМОТРЕТЬ РЕШЕНИЕ

56.17 Уравнение движения муфты центробежного регулятора двигателя имеет вид mx + βx + cx = A(ω - ω0), где x — перемещение муфты регулятора, m — инерционный коэффициент системы, β — коэффициент сопротивления, c — жесткость пружин регулятора, ω — мгновенная и ω0 — средняя угловые скорости машины, A — постоянная. Уравнение движения машины имеет вид J(dω/dt) = - Bx (B — постоянная, J — приведенный момент инерции вращающихся частей двигателя). Установить условия устойчивости системы, состоящей из двигателя и регулятора.
СМОТРЕТЬ РЕШЕНИЕ

56.18 Симметричный волчок, острие которого помещено в неподвижном гнезде, вращается вокруг своей вертикально расположенной оси. На него поставлен второй симметричный волчок, который также вращается вокруг вертикальной оси. Острие оси второго волчка опирается на гнездо в оси первого волчка. М и М — массы верхнего и нижнего волчков, С и С —их моменты инерции относительно осей симметрии; А и A —моменты инерции относительно горизонтальных осей, проходящих через острия; с и с — расстояния центров масс волчков от соответствующих остриев; h— расстояние между остриями. Угловые скорости волчков Ω и Ω&prime. Вывести условия устойчивости системы.
СМОТРЕТЬ РЕШЕНИЕ

56.19 Деталь 1 перемещается поступательно с постоянной скоростью v0 и через пружину передает движение ползуну 2. Сила трения между ползуном и направляющими 3 зависит от скорости ползуна v следующим образом: Н = Н0 sign v — αv + βv3, где H0, α, β - положительные коэффициенты. Определить, при каких значениях v0 равномерное движение ползуна является устойчивым.
СМОТРЕТЬ РЕШЕНИЕ

56.20 Агрегат, состоящий из двигателя 1 и машины 2, соединенных упругой муфтой 3 с жесткостью c, рассматривается как двухмассовая система. К ротору двигателя, имеющему момент инерции J1 приложен момент М1 зависящий от угловой скорости ротора φ: М1 = М0-μ1(φ -ω0). К валу машины, имеющему момент инерции J2, приложен момент сил сопротивления, зависящий от угловой скорости вала φ: М2 = М0 — μ2(φ-ω0) .Коэффициенты μ1 и μ2 положительны. Определить условия, при которых вращение системы с угловой скоростью ω0 является устойчивым.
СМОТРЕТЬ РЕШЕНИЕ
Нелинейные колебания
57.1 При испытаниях рессор была получена треугольная характеристика изменения упругой силы. При отклонении рессоры от положения статического равновесия имеет место верхняя ветвь (с1) характеристики, при возвращении — нижняя ветвь (с2) характеристики. В начальный момент рессора отклонена от положения статического равновесия на дг0 и не имеет начальной скорости. Масса надрессорного тела т, массой рессоры пренебречь; коэффициенты жесткости рессоры с1 и с2. Написать уравнения свободных колебаний рессоры для первой половины полного периода колебании и найти полный период колебании
СМОТРЕТЬ РЕШЕНИЕ

57.2 Определить закон убывания амплитуд свободных колебаний рессоры, рассмотренной в предыдущей задаче. При записи свободных колебаний был получен следующий ряд последовательно убывающих амплитуд: 13,0 мм, 7,05 мм, 3,80 мм, 2,05 мм и т. д. Определить согласно данным виброграммы отношение коэффициентов жесткости с1/с2, соответствующих верхней и нижней ветвям треугольной характеристики.
СМОТРЕТЬ РЕШЕНИЕ

57.3 Масса m колеблется на пружине, коэффициент жесткости которой c. На одинаковых расстояниях Д от положения равновесия установлены жесткие упоры. Считая, что удары об упоры происходят с коэффициентом восстановления, равным единице, определить закон движения системы при периодических колебаниях с частотой ω. Найти возможные значения ω.
СМОТРЕТЬ РЕШЕНИЕ

57.4 Решить предыдущую задачу в предположении, что имеется только нижний упор.
СМОТРЕТЬ РЕШЕНИЕ

57.5 Определить зависимость амплитуды первой гармоники свободных колебаний от их частоты в системе, уравнение движения которой имеет вид mx + F0 sign(x) + cx = 0
СМОТРЕТЬ РЕШЕНИЕ

57.6 Движение системы описывается уравнением. Определить амплитуду автоколебательного процесса, возникающего в системе; исследовать его устойчивость.
СМОТРЕТЬ РЕШЕНИЕ

57.7 Выявить условия, при которых в системе, рассмотренной в задаче 56.19, могут возникнуть автоколебания, близкие к гармоническим колебаниям частоты k = √c/m где с — коэффициент жесткости пружины, m — масса ползуна. Определить приближенно амплитуду этих автоколебаний
СМОТРЕТЬ РЕШЕНИЕ

57.8 Предполагая, что в системе, рассмотренной в задаче 56.19, сила трения Н постоянна и равна Н2 при v <>0 и равна Н1 при v = 0 ( трение покоя ), определить период автоколебаний. Принять, что масса ползуна m, а коэффициент жесткости пружины c.
СМОТРЕТЬ РЕШЕНИЕ

57.9 Масса m связана с неподвижным основанием пружиной с жесткостью с и демпфером сухого трения, величина силы сопротивления в котором не зависит от скорости и равна H. На одинаковых расстояниях Δ от положения равновесия установлены жесткие упоры. Считая, что удары об упоры происходят с коэффициентом восстановления, равным единице, определить значение H, при котором вынуждающая сила F cos(ωt) не может вызвать субгармонических резонансных колебаний, имеющих частоту ω/s (s — целое число).
СМОТРЕТЬ РЕШЕНИЕ

57.10 Центр однородного кругового цилиндра, катящегося без скольжения по горизонтальной плоскости, соединен пружиной с неподвижной точкой O, находящейся на одной вертикали с центром диска, когда диск находится в положении равновесия. Масса цилиндра равна m, коэффициент жесткости пружины c. В положении равновесия пружина не деформирована, длина ее равна l. Определить зависимость периода малых колебаний цилиндра около положения равновесия от амплитуды a, сохранив в уравнении движения члены, содержащие третью степень перемещения.
СМОТРЕТЬ РЕШЕНИЕ

57.11 Методом малого параметра определить амплитуду а и период автоколебаний, возникающих в системе, движение которой определяется уравнением
СМОТРЕТЬ РЕШЕНИЕ

57.12 Уравнения движения маятника в среде с сопротивлением и постоянным моментом, действующим только в одном направлении, имеют вид где h, k и М0—постоянные величины. Считая, что 2h/k<<1. 1, М0/k2 <<1, применить метод медленно меняющихся коэффициентов для нахождения установившегося движения маятника.
СМОТРЕТЬ РЕШЕНИЕ

57.13 Применяя в предыдущей задаче метод точечных преобразований, найти неподвижную точку преобразования.
СМОТРЕТЬ РЕШЕНИЕ
Вероятностные задачи статики
58.1. Каток радиуса R = 0,5 м и массы m = 800 кг упирается в жесткое препятствие. Высота препятствия H может быть различной; предполагается, что h можно считать случайной величиной с гауссовским распределением, причем ее математическое ожидание равно mh = 0,1 м, а среднее квадратическое отклонение равно σh = 0,02 м. Определить вероятность си того, что горизонтальная сила Q1 = 4900 Н достаточна для преодоления препятствия. Определить, при каком значении силы Q = Q2 вероятность преодоления препятствия равна α 2 = 0,999.
СМОТРЕТЬ РЕШЕНИЕ

58.2. Вертикальная подпорная стенка высоты А = 5 м постоянного сечения толщины a = 1,1 м нагружена гидростатическим давлением воды, уровень которой может быть различным. Плотность материала стены составляет 2,2 т/м3. Считая высоту п уровня воды от основания стенки случайной величиной с гауссовским законом распределения, с математическим ожиданием тн = 3,0 м и средним квадратическим отклонением σР = 0,5 м, определить вероятность опрокидывания стенки. Определить также минимально допустимую толщину стенки, исходя из требования, что вероятность ее опрокидывания не должна превышать 3*10-5 .
СМОТРЕТЬ РЕШЕНИЕ

58.3. Определить необходимую силу Q затяжки болта, соединяющего две детали, находящиеся под действием растягивающей силы Р, исходя из того, что вероятность проскальзывания должна быть 5*10-4. Сила Р и коэффициент трения f между деталями могут принимать различные значения; предполагается, что их можно считать независимыми случайными величинами с гауссовским законом распределения, причем их математические ожидания соответственно равны mр = 2000 Н, mf = 0,1, а средние квадратические отклонения σр = 200 Н, σf = 0,02.
СМОТРЕТЬ РЕШЕНИЕ

58.4. Груз массы m = 200 кг находится на шероховатой наклонной плоскости. Наклон плоскости и коэффициент трения скольжения могут быть различными. Угол γ наклона плоскости относительно горизонта и коэффициент трения f считаются независимыми случайными величинами с гауссовским распределением, их математические ожидания соответственно равны mγ=0, mf=0,2, а средние квадратические отклонения равны σγ= 3° и σf= 0,04. Определить значение горизонтальной силы Q, достаточной для того, чтобы с вероятностью 0,999 сдвинуть груз по плоскости
СМОТРЕТЬ РЕШЕНИЕ

58.5. В однородном круглом диске радиуса R = 1 м на расстоянии l от центра вырезано круглое отверстие радиуса r. Величины l и r могут принимать различные значения, они считаются случайными, независимыми, подчиняющимися гауссовскому распределению. Их математические ожидания соответственно равны m l = = 0,1 м и mr= 0,05 м, а средние квадратические отклонения равны ма/=0,01 м и Or = 0,005 .м. Определить такое значение смещения центра масс относительно центра диска, вероятность превышения которого составляет 0,001. В выражении для смещения центра масс пренебречь слагаемыми с произведениями отклонении величин l и r от их математических ожиданий.
СМОТРЕТЬ РЕШЕНИЕ

58.6. На уравновешенном роторе, масса которого равна 1000 кг, симметрично относительно оси вращения закреплены две однотипные детали А1 и A2. Случайные отклонения ΔM1 и ΔM2 их масс М1 и М2 от номинального значения (математического ожидания) и случайные смещения Δх1, Δу1 и Δх2 и Δу2 их центров масс относительно точек, лежащих на одном диаметре на расстоянии l = 1 м от оси ротора, приводят к тому, что центр масс С ротора вместе с деталями оказывается смещенным относительно оси. Поэтому координаты хс и ус центра масс являются случайными. Предполагается, что случайные величины М1 и М2, Δх1 Δу1 и Δх2, Δу2 независимы и распределены по гауссовскому закону, их математические ожидания соответственно равны mM1 = mM2 = 100 кг, mΔx1 =mΔy1 =mΔx2 =mΔy2 = 0, а средние квадратические отклонения равны σM1 = σM2 = 0,5 кг, σΔx1 =σΔy1 =σΔx2 =σΔy2 = 3 мм. Определить границы симметричных интервалов для координат хс и ус центра масс ротора вместе с деталями, вероятность нахождения в которых равна α = 0,99.
СМОТРЕТЬ РЕШЕНИЕ

58.7. Однородная прямоугольная платформа массы 1000 кг подвешена к опоре на четырех тросах одинаковой длины, сходящихся в одной точке. Расстояние платформы до точки подвеса равно h = 2 м. На платформу установлены четыре груза малых размеров. Массы и расположение грузов случайны. Предполагается, что массы грузов и их прямоугольные координаты хi и уi, отсчитываемые от центра платформы, взаимно независимы и имеют гауссовское распределение. Математические ожидания масс всех четырех грузов одинаковы и равны mM = 100 кг, среднеквадратические отклонения также одинаковы и равны σM = 20 кг. Координаты грузов имеют нулевые математические ожидания, средние квадратические отклонения координат равны σх =0,5 м и σу =0,7 м. Определить границы таких симметричных интервалов для углов наклона θx и θy платформы, находящейся в равновесии при установленных грузах, вероятности нахождения в которых равны 0,99 Углы считать малыми
СМОТРЕТЬ РЕШЕНИЕ
Вероятностные задачи кинематики и динамики
59.1. Самолет летит из начального в конечный пункт, расстояние между которыми равно 1500 км. Скорость полета v постоянна во времени для каждого полета, но для разных полетов принимает различные значения. Предполагается, что скорость представляет собой случайную величину с гауссовским распределением, с математическим ожиданием mv = 250 м/с и средним квадратическим отклонением σv = 10 м/с. Определить симметричный интервал для времени полета, соответствующий вероятности 0,999.
СМОТРЕТЬ РЕШЕНИЕ

59.2. Самолет летит по прямой линии от начального пункта. Угол ψ отклонения этой прямой от заданной прямолинейной траектории в разных полетах может принимать различные значения. Предполагается, что угол ψ является случайной величиной с гауссовским распределением, его математическое ожидание равно нулю, а среднее квадратическое отклонение равно σψ = 2°. Определить значения вероятности того, что на расстояниях L = 50; 100; 200 км боковое отклонение от заданной траектории не превысит 5 км.
СМОТРЕТЬ РЕШЕНИЕ

59.3. Поезд двигался с начальной скоростью 15 м/с. При торможении ускорение замедленного движения постоянно во времени, но может принимать различные значения. Предполагается, что ускорение w является случайной величиной с гауссовским распределением, с математическим ожиданием mw = —0,2 м/с2 и средним квадратическим отклонением σw =0,03 м/с2. Определить математическое ожидание и среднее квадратическое отклонение тормозного расстояния до остановки, а также верхнюю границу тормозного расстояния, вероятность превышения которой составляет 0,05.
СМОТРЕТЬ РЕШЕНИЕ

59.4. При расчетной оценке точности стрельбы в мишень принимается, что скорость полета пули постоянна, учитывается случайное отклонение оси ствола и случайное отличие скорости пуль от номинального значения. Считается, что пуля попадает точно в центр мишени, если при точном задании направления оси ствола скорость вылета равна номинальному значению 600 м/с. Углы отклонения φ и ψ оси ствола от заданного направления и отличие Δv скорости вылета от номинального значения считаются независимыми случайными величинами с гауссовским распределением, с нулевыми математическими ожиданиями и со средними квадратическими отклонениями соответственно σφ= σψ= 0,5*10-3 рад и σv = 75 м/с. Расстояние до мишени равно l = 50 м. Определить симметричные интервалы для горизонтального и вертикального смещений точек попадания в мишень относительно ее центра, соответствующие вероятности 0,99.
СМОТРЕТЬ РЕШЕНИЕ

59.5. Снаряд выпущен из орудия с поверхности Земли. Угол бросания φ и начальная скорость v0 могут отличаться от расчетных значений; они считаются независимыми случайными величинами с гауссовским распределением, с математическими ожиданиями, равными расчетным значениям mφ= 10° и mv0= 1000 м/с, со средними квадратическими отклонениями σφ =0,1 и σv0= 10 м/с. Пренебрегая силой сопротивления воздуха, определить интервал дальностей возможных точек падения снаряда на Землю, соответствующий вероятности 0,90. В выражении приращения дальности сохранить слагаемые только первого порядка относительно отклонений угла и скорости от расчетных значений.
СМОТРЕТЬ РЕШЕНИЕ

59.6. Вагон, центр масс которого находится на высоте 2,5 м от уровня полотна железной дороги с шириной колеи 1,5 м, движется по криволинейному участку с радиусом кривизны ρ = 800 м. Подъем наружного рельса над уровнем внутреннего выбран так, чтобы при скорости вагона, равной v = 20 м/с, давление колес на оба рельса было одинаковым. В действительности скорость вагона может быть различной. Принимается, что скорость является случайной величиной с гауссовским распределением, с математическим ожиданием mv = 15 м/с и средним квадратическим отклонением σv = 4 м/с. Определить отношение сил давления колес на внешний и внутренний рельсы при скорости, соответствующей верхней границе интервала, определенного для вероятности α = 0,99.
СМОТРЕТЬ РЕШЕНИЕ

59.7. Автомашина движется по дороге без уклона со скоростью 15 м/с. При торможении сила трения постоянна во времени, но может принимать различные значения. Принимается, что удельная сила трения при торможении является случайной величиной с гауссовским распределением, ее математическое ожидание равно 3000 Н на 1 т массы, а среднее квадратическое отклонение составляет 700 Н на 1 т массы. Определить значения вероятности того, что тормозной путь до остановки превысит 40 м; 80 м.
СМОТРЕТЬ РЕШЕНИЕ

59.8. Ротор массы М, представляющий собой однородный цилиндр радиуса R и длины l, насажен на вал с перекосом и смещением, так что его ось симметрии отклонена от оси вала на малый случайный угол γ, а его центр, расположенный посередине между подшипниками, смещен относительно оси вала на случайную величину h. Расстояние между подшипниками равно 2L. Предполагается, что γ и h представляют собой независимые случайные величины, угол у имеет нулевое математическое ожидание, расстояние h—математическое ожидание тн и средние квадратические отклонения соответственно равны σγ и σh. Угловая скорость ω вращения ротора вокруг вертикальной оси считается случайной величиной с математическим ожиданием mω и средним квадратическим отклонением σω. Определить средние квадратические отклонения σR1 и σR2 реакций подшипников R1 и R2.
СМОТРЕТЬ РЕШЕНИЕ

59.9. На груз массы 1 кг, подвешенный на нити длины 1 м, в начальный момент времени находившийся в состоянии покоя на одной вертикали с точкой подвеса, кратковременно действует горизонтальная сила, постоянная во времени в течение интервала действия. Сила F и интервал времени ее действия τ являются независимыми случайными величинами с гауссовским распределением, с математическими ожиданиями, равными соответственно mF = = 300 Н и mτ = 0,01 с и средними квадратическими отклонениями, равными σF = 5 Н и στ = 0,002 c. Определить значения вероятности того, что амплитуда свободных колебаний груза на нити после окончания удара превысит 60° и 90°.
СМОТРЕТЬ РЕШЕНИЕ

59.10. Груз падает с высоты Н на упругую пружину, массой которой по сравнению с массой груза можно пренебречь. Статический прогиб пружины под грузом равен 2 мм. Высота Н считается случайной величиной с гауссовским распределением, с математическим ожиданием, равным 1 м, и средним квадратическим отклонением, равным 0,3 м. Определить верхнюю границу интервала возможных изменений максимального значения ускорения при ударе для вероятности нахождения в этом интервале, равной 0,95.
СМОТРЕТЬ РЕШЕНИЕ

59.11. Длина l математического маятника известна неточно. Предполагается, что l представляет собой случайную величину с гауссовским распределением, с известным математическим ожиданием m l = 0,25 мне неизвестным средним квадратическим отклонением σ l . Определить допустимое значение σ l , при котором значения периода свободных малых колебаний различаются не более, чем на 0,1 % с вероятностью 0,99.
СМОТРЕТЬ РЕШЕНИЕ

59.12 Физический маятник представляет собой тело массы m, вращающееся вокруг горизонтальной оси; его момент инерции J и смещение l центра масс относительно оси считаются заданными. Силы сопротивления, пропорциональные скорости, таковы, что при свободных колебаниях маятника отношение предыдущего размаха к последующему равно q. Точка подвеса маятника совершает горизонтальные случайные колебания. Ускорение w точки подвеса можно считать белым шумом постоянной интенсивности В2. Определить установившееся среднее квадратическое значение угла отклонения маятника при вынужденных колебаниях, а также среднее число выбросов n угла за уровень, в 2 раза превышающий среднее квадратическое значение в течение времени Т.
СМОТРЕТЬ РЕШЕНИЕ

59.13. Точка подвеса физического маятника, частота свободных колебаний которого равна k =15 рад/с, а отношение последующего размаха к предыдущему при свободных колебаниях равно m= 1,2, совершает горизонтальные случайные колебания. Скорость точки подвеса при колебаниях можно считать белым шумом интенсивности D2 = 1000 м2/с. Определить среднее квадратическое значение угла отклонения маятника.
СМОТРЕТЬ РЕШЕНИЕ

59.14. Прибор установлен на упругих линейных амортизаторах на подвижном основании, совершающем вертикальные случайные колебания. Силы сопротивления при колебаниях прибора относительно основания таковы, что в режиме свободных колебаний отношение предыдущего размаха к последующему равно m = 1,5. Вертикальное ускорение при колебаниях основания можно считать белым шумом интенсивности В2 = 100. Определить, каковы должны быть частота свободных колебаний прибора на амортизаторах и статическое смещение под действием силы тяжести, чтобы среднее квадратическое значение абсолютного ускорения w при вынужденных колебаниях прибора было равно σw = 50 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

59.15. Линейный акселерометр, основным элементом которого, является инерционная масса, связанная линейной пружиной с корпусом и находящаяся в вязкой жидкости, имеет аплитудно частотную характеристику с резонансным пиком, причем частота, соответствующая пику, равна ω0 = 100 рад/с, а относительная высота резонансного пика (по отношению к значению амплитудночастотной характеристики при ω=0) равна 1,4. При тарировке акселерометра получено, что если установить его измерительную ось вертикально, а затем повернуть акселерометр на 180°, его выходной сигнал, пропорциональный смешению инерционной массы, изменится на 5 B. Акселерометр установлен на подвижном основании, совершающем случайные колебания по одной оси, по этой же оси направлена измерительная ось акселерометра. Предполагается, что случайное ускорение колебаний основания можно считать белым шумом. Определить интенсивность этого белого шума, если осредиеннос значение квадрата переменной составляющей выходного сигнала акселерометра составляет 100 В2.
СМОТРЕТЬ РЕШЕНИЕ

59.16. На одном и том же основании, совершающем горизонтальные случайные колебания по одной оси, горизонтально установлены три линейных акселерометра, имеющих одинаковые статические характеристики, но различные динамические свойства. Первый из них имеет собственную частоту ω0 и относительную высоту резонансного пика, равную 1,2, второй — ту же собственную частоту, но относительную высоту резонансного пика, равную 1,6, третий — собственную частоту 2ω0, а относительную высоту резонансного пика, как у первого акселерометра. Предполагая, что случайное ускорение при колебаниях основания можно считать белым шумом, определить, насколько различаются средние квадратические значения σ1, σ2 и σ3 выходных сигналов этих акселерометров.
СМОТРЕТЬ РЕШЕНИЕ