Решение задач » Решебники онлайн » Решебники по теоретической механике онлайн » Решебник Мещерский онлайн (ГДЗ Мещерский 1986 г, решение задач)
Решебник Мещерский онлайн

Смешанные задачи (сложное движение)
25.1 Колеса паровоза соединены спарником AB. Колеса радиуса r=80 см катятся без скольжения по рельсам налево. При движении из состояния покоя угол поворота колес φ=∠PO1A изменяется по закону φ=3πt2/4 рад. Вдоль спарника AB, в соответствии с уравнением s=AM=(10+40t2) см, движется ползун M. Определить абсолютную скорость и абсолютное ускорение ползуна M в момент t=1 c, если O1O2=AB, O1A=O2B=r/2.
СМОТРЕТЬ РЕШЕНИЕ

25.2 Неподвижная шестерня 1 соединена цепью с одинаковой по радиусу подвижной шестерней 2. Шестерня 2 приводится в движение с помощью кривошипа OA=60 см, вращающегося против хода часовой стрелки по закону φ=πt/6 рад. В момент времени t=0 кривошип OA находился в правом горизонтальном положении. Вдоль горизонтальной направляющей BC шестерни 2, совмещенной с осью s, движется ползун M, совершающий колебания около центра A по закону s=AM=20 sin πt/2 см. Определить абсолютную скорость и абсолютное ускорение ползуна M в моменты времени: t1=0, t2=1 c.
СМОТРЕТЬ РЕШЕНИЕ

25.3 Треугольная призма, образующая угол 45° с горизонтом, скользит направо по горизонтальной плоскости со скоростью v (v=2t см/с). По наклонной грани призмы скатывается без скольжения круглый цилиндр. Модуль скорости его центра масс C относительно призмы равен vC=4t см/с. Определить модуль абсолютной скорости и абсолютного ускорения точки A, лежащей на ободе цилиндра, если в момент t=1 с ∠ACD=90°.
СМОТРЕТЬ РЕШЕНИЕ

25.4 Коническая шестерня M приводится в движение по шестерне N с помощью оси OC, закрепленной в точке O и вращающейся вокруг вертикальной оси z с постоянной угловой скоростью 2 рад/с. Горизонтальная платформа P, к которой прикреплена шестерня N, движется ускоренно вертикально вниз, имея в данный момент скорость v=80 см/с и ускорение w=80√3 см/с2. Угол BOA=60°, диаметр AB шестерни M равен 20 см. Найти абсолютные скорости и ускорения точек A и B шестерни M.
СМОТРЕТЬ РЕШЕНИЕ

25.5 Решить предыдущую задачу в предположении, что ось OC вращается вокруг вертикальной оси z с угловой скоростью, равной 2t рад/с. Найти абсолютные ускорения точек A и B конической шестерни M для момента времени t=1 c.
СМОТРЕТЬ РЕШЕНИЕ

25.6. Поворотный кран вращается вокруг вертикальной неподвижной оси 0,02 с угловой скоростью ω = 1 рад/с. Вдоль горизонтальной стрелы крана, совмещенной с осью s, катится без скольжения тележка. Центр масс С ее заднего колеса радиуса 10 см движется по закону sc = OC = 60(1 + t) см. Определить модуль абсолютной скорости точки A1, лежащей на ободе колеса, в момент t = 1 c, если MCD=* 30°. Найти также модули абсолютных ускорений точек А и D, лежащих на ободе колеса, в момент t = 1 c, если ACD = 90°.
СМОТРЕТЬ РЕШЕНИЕ

25.7 Шестерня 1 радиуса 10 см приводится в движение внутри шестерни 2 радиуса 40 см с помощью кривошипа OC, вращающегося с постоянной угловой скоростью ω0=2 рад/с. Шестерня 2 в свою очередь вращается вокруг горизонтальной неподвижной оси O1O2 с постоянной угловой скоростью ω=2 рад/с. Определить модули абсолютной скорости и абсолютного ускорения точки A, лежащей на ободе шестерни 1, если ∠OCA=∠O1OC=90°.
СМОТРЕТЬ РЕШЕНИЕ

25.8. Найти модуль абсолютного ускорения точки А в предыдущей задаче для момента времени t = 2 c, если вращение шестерни 2 вокруг неподвижной горизонтальной оси O1O2 происходит с переменной угловой скоростью ω= (2 - t) рад/с. Считать, что в момент времени t = 2 с точка A занимает положение, указанное на рисунке к предыдущей задаче.
СМОТРЕТЬ РЕШЕНИЕ

25.9 Шестерня 1 радиуса 10 см приводится в движение по шестерне 2 радиуса 20 см посредством кривошипа OC, вращающегося с угловой скоростью ω0=t рад/с. Шестерня 2 в свою очередь вращается вокруг неподвижной горизонтальной оси O1O2 с постоянной угловой скоростью ω (ω=2 рад/с). Определить модуль абсолютной скорости и абсолютного ускорения в момент t=1 с точки A, лежащей на ободе шестерни 1, если ∠O2OC=∠OCA=90°.
СМОТРЕТЬ РЕШЕНИЕ

25.10 Кривошип OC с помощью стержня AB приводит в движение ползуны A и B, которые скользят вдоль взаимно перпендикулярных направляющих x и y. Эти направляющие в свою очередь вращаются против хода часовой стрелки вокруг оси O с постоянной угловой скоростью ω (ω=π/2 рад/с). Угол поворота φ кривошипа OC, отсчитываемый от оси x против хода часовой стрелки, изменяется по закону φ=πt/4 рад. Найти модули абсолютной скорости и абсолютного ускорения точки M линейки AB в момент времени t=0, если OC=AC=CB=2BM=16 см.
СМОТРЕТЬ РЕШЕНИЕ

25.11 Конус 1 с углом при вершине O равным 60° катится без скольжения внутри конуса 2 с углом при вершине 120°. Конус 2 в свою очередь вращается вокруг неподвижной вертикальной оси O1O2 с постоянной угловой скоростью ω (ω=3 рад/с). Точка B обода основания конуса 1 лежит на диаметре BC, расположенном в одной вертикальной плоскости с осью O1O2. Скорость точки B по модулю постоянна, равна 60 см/с и направлена за рисунок перпендикулярно плоскости OBC; OB=OC=20 см, ∠COD=30°. Определить модули абсолютных ускорений точек B и C конуса 1.
СМОТРЕТЬ РЕШЕНИЕ

25.12 Найти в момент времени t=1 с геометрическое место точек конуса 1, рассмотренного в предыдущей задаче, абсолютные ускорения которых не изменятся, несмотря на то, что скорость точки B будет переменной и равной 60t см/с.
СМОТРЕТЬ РЕШЕНИЕ

25.13 Круговой конус катится без скольжения по горизонтальному диску, к которому он прикреплен вершиной Q. Диск в свою очередь вращается вокруг неподвижной вертикальной оси O1O2 с постоянной угловой скоростью ω (ω=2 рад/с). Скорость центра A основания конуса относительно покоящегося диска равна по модулю 15 см/с и направлена на читателя перпендикулярно плоскости рисунка. Найти модули абсолютной скорости и абсолютного ускорения точки C касания основания конуса с диском, если OQ=QC=QB=BC=10 см.
СМОТРЕТЬ РЕШЕНИЕ

25.14 Определить модуль абсолютного ускорения точки C, рассмотренной в предыдущей задаче, для момента времени t=1 с в предположении, что диск вращается ускоренно с угловым ускорением ε (ε=2t рад/с2), причем в начальный момент времени модуль угловой скорости был равен 2 рад/с.
СМОТРЕТЬ РЕШЕНИЕ

25.15 Гироскоп установлен на горизонтальной платформе L, вращающейся вокруг неподвижной вертикальной оси O1O1 с постоянной угловой скоростью ω1 (ω1=2π рад/с). Гироскопом является диск K радиуса r=10 см, вращающийся вокруг горизонтальной оси O2O 2 с постоянной угловой скоростью ω2 (ω2=8π рад/с). Ось O2O2 в свою очередь вращается вокруг вертикальной оси O3O3 по закону φ3=2πt2 рад. В момент времени t=0 диск K лежал в одной вертикальной плоскости с осью O1O1. Угол φ3 отсчитывается от этой плоскости в направлении, указанном на рисунке. Оси O2O 2 и O3O 3 пересекаются в центре диска K. Найти модули абсолютной скорости и абсолютного ускорения точки A, лежащей на верхнем конце вертикального диаметра AB диска K в момент времени t=1 c, если расстояние между параллельными осями O1O1 и O3O3 равно OO3=30 см.
СМОТРЕТЬ РЕШЕНИЕ

25.16 Вдоль шатуна AB кривошипно-ползунного механизма OAB около точки C совершает колебания муфта M по закону s=CM=20 sin πt/2 см (ось s, направленная вдоль шатуна AB, имеет начало в центре C шатуна). Кривошип OA вращается вокруг горизонтальной оси O, перпендикулярной плоскости рисунка, против хода часовой стрелки по закону φ=πt/2 рад. Определить модули абсолютной скорости и абсолютного ускорения муфты M в момент времени t=0, если OA=10 см, AC=CB=AB/2=20 см.
СМОТРЕТЬ РЕШЕНИЕ

25.17 Стержень AB длины 4√2 м скользит концом A вниз вдоль оси y, а концом B вдоль оси x направо. Точка A движется по закону yA=(5-t2) м. Одновременно вдоль стержня от A к B соскальзывает точка M. Определить модуль абсолютной скорости и абсолютного ускорения точки M в момент t=1 c, если уравнение движения точки M вдоль оси s, совмещенной со стержнем, имеет вид s=AM=2√2t2 м.
СМОТРЕТЬ РЕШЕНИЕ

25.18 Круговой конус 1 с углом при вершине равным 120° прикреплен к неподвижному конусу 2 с углом при вершине 60° шарниром O и катится без скольжения. При этом ось OA конуса 1 совершает вокруг вертикальной оси O1O2 один оборот в секунду. Вдоль диаметра BC=20 см основания конуса 1 проложена направляющая, по которой скользит ползун M, совершая колебания около центра A по закону s=AM=10 cos 2πt см. В начальный момент времени t=0 направляющая BC лежит в одной вертикальной плоскости с шарниром O. Найти модуль абсолютного ускорения ползуна M в момент t=0.
СМОТРЕТЬ РЕШЕНИЕ
Определение сил по заданному движению
26.1 В шахте опускается равноускоренно лифт массы 280 кг. В первые 10 с он проходит 35 м. Найти натяжение каната, на котором висит лифт.
СМОТРЕТЬ РЕШЕНИЕ

26.2 Горизонтальная платформа, на которой лежит груз массы 1,02 кг, опускается вертикально вниз с ускорением 4 м/с2. Найти силу давления, производимого грузом на платформу во время их совместного спуска.
СМОТРЕТЬ РЕШЕНИЕ

26.3 К телу массы 3 кг, лежащему на столе, привязали нить, другой конец которой прикреплен к точке A. Какое ускорение надо сообщить точке A, поднимая тело вверх по вертикали, чтобы нить оборвалась, если она рвется при натяжении T=42 Н.
СМОТРЕТЬ РЕШЕНИЕ

26.4 При подъеме клетки лифта график скоростей имеет вид, изображенный на рисунке. Масса клетки 480 кг. Определить натяжения T1, T2, T3 каната, к которому привешена клетка, в течение трех промежутков времени: 1) от t = 0 до t = 2 c; 2) от t = 2 до t = 8 с и 3) от t = 8 с до t = 10 c.
СМОТРЕТЬ РЕШЕНИЕ

26.5 Камень массы 0,3 кг, привязанный к нити длины 1 м, описывает окружность в вертикальной плоскости. Определить наименьшую угловую скорость ω камня, при которой произойдет разрыв нити, если сопротивление ее разрыву равно 9 Н.
СМОТРЕТЬ РЕШЕНИЕ

26.6 На криволинейных участках железнодорожного пути возвышают наружный рельс над внутренним для того, чтобы сила давления проходящего поезда на рельсы была направлена перпендикулярно полотну дороги. Определить величину h возвышения наружного рельса над внутренним при следующих данных: радиус закругления 400 м, скорость поезда 10 м/с, расстояние между рельсами 1,6 м.
СМОТРЕТЬ РЕШЕНИЕ

26.7 В вагоне поезда, идущего сначала по прямолинейному пути, а затем по закругленному со скоростью 20 м/с, производится взвешивание некоторого груза на пружинных весах; весы в первом случае показывают 50 Н, а на закруглении 51 Н. Определить радиус закругления пути.
СМОТРЕТЬ РЕШЕНИЕ

26.8 Гиря массы 0,2 кг подвешена к концу нити длины 1 м; вследствие толчка гиря получила горизонтальную скорость 5 м/с. Найти натяжение нити непосредственно после толчка.
СМОТРЕТЬ РЕШЕНИЕ

26.9 Груз М массы 0,102 кг, подвешенный на нити длины 30 см в неподвижной точке O, представляет собой конический маятник, т. е. описывает окружность в горизонтальной плоскости, причем нить составляет с вертикалью угол 60°. Определить скорость v груза и натяжение T нити.
СМОТРЕТЬ РЕШЕНИЕ

26.10 Автомобиль массы 1000 кг движется по выпуклому мосту со скоростью v=10 м/с. Радиус кривизны в середине моста ρ=50 м. Определить силу давления автомобиля на мост в момент прохождения его через середину моста.
СМОТРЕТЬ РЕШЕНИЕ

26.11 В поднимающейся кабине подъемной машины производится взвешивание тела на пружинных весах. При равномерном движении кабины показание пружинных весов равно 50 Н, при ускоренном — 51 Н. Найти ускорение кабины.
СМОТРЕТЬ РЕШЕНИЕ

26.12 Масса кузова трамвайного вагона 10000 кг. Масса тележки с колесами 1000 кг. Определить силу наибольшего и наименьшего давления вагона на рельсы горизонтального прямолинейного участка пути, если на ходу кузов совершает на рессорах вертикальные гармонические колебания по закону x=0,02 sin 10t м.
СМОТРЕТЬ РЕШЕНИЕ

26.13 Поршень двигателя внутреннего сгорания совершает горизонтальные колебания согласно закону x = r(cos ωt + (r cos 2ωt)/(4l)) см, где r — длина кривошипа, l — длина шатуна, ω — постоянная по величине угловая скорость вала. Определить наибольшее значение силы, действующей на поршень, если масса последнего M.
СМОТРЕТЬ РЕШЕНИЕ

26.14 Решето рудообогатительного грохота совершает вертикальные гармонические колебания с амплитудой a=5 см. Найти наименьшую частоту k колебаний решета, при которой куски руды, лежащие на нем, будут отделяться от него и подбрасываться вверх.
СМОТРЕТЬ РЕШЕНИЕ

26.15 Тело массы 2,04 кг совершает колебательное движение по горизонтальной прямой согласно закону x=10 sin(πt/2) м. Найти зависимость силы, действующей на тело, от координаты x, а также наибольшую величину этой силы.
СМОТРЕТЬ РЕШЕНИЕ

26.16 Движение материальной точки массы 0,2 кг выражается уравнениями x=3 cos 2πt см, y=4 sin πt см (t в с). Определить проекции силы, действующей на точку, в зависимости от ее координат.
СМОТРЕТЬ РЕШЕНИЕ

26.17 Шарик, масса которого равна 100 г, падает под действием силы тяжести и при этом испытывает сопротивление воздуха. Движение шарика выражается уравнением x = 4,9t – 2,45(1 - e-2t), где x — в метрах, t — в секундах, ось Ох направлена по вертикали вниз. Определить силу сопротивления воздуха R и выразить ее как функцию скорости шарика.
СМОТРЕТЬ РЕШЕНИЕ

26.18 Масса стола строгального станка 700 кг, масса обрабатываемой детали 300 кг, скорость хода стола v=0,5 м/с, время разгона t=0,5 c. Определить силу, необходимую для разгона (считая движение равноускоренным) и для дальнейшего равномерного движения стола, если коэффициент трения при разгоне f1=0,14, а при равномерном движении f2=0,07.
СМОТРЕТЬ РЕШЕНИЕ

26.19 Груженая вагонетка массы 700 кг опускается по канатной железной дороге с уклоном α=15°, имея скорость v=1,6 м/с. Определить натяжение каната при равномерном спуске и при торможении вагонетки. Время торможения t=4 c, общий коэффициент сопротивления движению f=0,015. При торможении вагонетка движется равнозамедленно.
СМОТРЕТЬ РЕШЕНИЕ

26.20 Груз массы 1000 кг перемещается вместе с тележкой вдоль горизонтальной фермы мостового крана со скоростью v=1 м/с. Расстояние центра тяжести груза до точки подвеса l=5 м. При внезапной остановке тележки груз по инерции будет продолжать движение и начнет качаться около точки подвеса. Определить наибольшее натяжение каната при качании груза.
СМОТРЕТЬ РЕШЕНИЕ

26.21 Определить отклонение α от вертикали и силу давления N вагона на рельс подвесной дороги при движении вагона по закруглению радиуса R=30 м со скоростью v=10 м/с. Масса вагона 1500 кг.
СМОТРЕТЬ РЕШЕНИЕ

26.22 Масса поезда без локомотива равна 2*105 кг. Двигаясь по горизонтальному пути равноускоренно, поезд через 60 с после начала движения приобрел скорость 15 м/с. Сила трения равна 0,005 веса поезда. Определить натяжение стяжки между поездом и локомотивом в период разгона.
СМОТРЕТЬ РЕШЕНИЕ

26.23 Спортивный самолет массы 2000 кг летит горизонтально с ускорением 5 м/с2, имея в данный момент скорость 200 м/с. Сопротивление воздуха пропорционально квадрату скорости и при скорости в 1 м/с равно 0,5 Н. Считая силу сопротивления направленной в сторону, обратную скорости, определить силу тяги винта, если она составляет угол в 10° с направлением полета. Определить также величину подъемной силы в данный момент.
СМОТРЕТЬ РЕШЕНИЕ

26.24 Грузовой автомобиль массы 6000 кг въезжает на паром со скоростью 6 м/с. Заторможенный с момента въезда на паром автомобиль остановился, пройдя 10 м. Считая движение автомобиля равнозамедленным, найти натяжение каждого из двух канатов, которыми паром привязан к берегу. При решении задачи пренебречь массой и ускорением парома.
СМОТРЕТЬ РЕШЕНИЕ

26.25 Грузы A и B веса PA=20 Н и PB=40 Н соединены между собой пружиной, как показано на рисунке. Груз А совершает свободные колебания по вертикальной прямой с амплитудой 1 см и периодом 0,25 c. Вычислить силу наибольшего и наименьшего давления грузов А и В на опорную поверхность CD.
СМОТРЕТЬ РЕШЕНИЕ

26.26 Груз массы M=600 кг посредством ворота поднимают по наклонному шурфу, составляющему угол 60° с горизонтом. Коэффициент трения груза о поверхность шурфа равен 0,2. Ворот радиуса 0,2 м вращается по закону φ=0,4t3. Найти натяжение троса, как функцию времени и значение этого натяжения через 2 с после начала подъема.
СМОТРЕТЬ РЕШЕНИЕ

26.27 Самолет, пикируя отвесно, достиг скорости 300 м/с, после чего летчик стал выводить самолет из пике, описывая дугу окружности радиуса R=600 м в вертикальной плоскости. Масса летчика 80 кг. Какая наибольшая сила прижимает летчика к креслу?
СМОТРЕТЬ РЕШЕНИЕ

26.28 Груз M веса 10 Н подвешен к тросу длины l=2 м и совершает вместе с тросом колебания согласно уравнению φ = π/6 sin 2πt, где φ — угол отклонения троса от вертикали в радианах, t — время в секундах. Определить натяжения T1 и T2 троса в верхнем и нижнем положениях груза.
СМОТРЕТЬ РЕШЕНИЕ

26.29 Велосипедист описывает кривую радиуса 10 м со скоростью 5 м/сек. Найти угол наклона срединной плоскости велосипеда к вертикали, а также тот наименьший коэффициент трения между шинами велосипеда и полотном дороги, при котором будет обеспечена устойчивость велосипеда.
СМОТРЕТЬ РЕШЕНИЕ

26.30 Велосипедный трек на кривых участках пути имеет виражи, профиль которых в поперечном сечении представляет собой прямую, наклонную к горизонту, так что на кривых участках внешний край трека выше внутреннего. С какой наименьшей и с какой наибольшей скоростью можно ехать по виражу, имеющему радиус R и угол наклона к горизонту α, если коэффициент трения резиновых шин о грунт трека равен f?
СМОТРЕТЬ РЕШЕНИЕ

26.31 Во избежание несчастных случаев, происходивших от разрыва маховиков, устраивается следующее приспособление. В ободе маховика помещается тело A, удерживаемое внутри его пружиной S; когда скорость маховика достигает предельной величины, тело А концом своим задевает выступ В задвижки CD, которая и закрывает доступ пара в машину. Пусть масса тела А равна 1,5 кг, расстояние e выступа В от маховика равно 2,5 см, предельная угловая скорость маховика 120 об/мин. Определить необходимый коэффициент жесткости пружины c (т. е. величину силы, под действием которой пружина сжимается на 1 см), предполагая, что масса тела А сосредоточена в точке, расстояние которой от оси вращения маховика в изображенном на рисунке положении равно 147,5 см.
СМОТРЕТЬ РЕШЕНИЕ

26.32 В регуляторе имеются гири A массы 30 кг, которые могут скользить вдоль горизонтальной прямой MN; эти гири соединены пружинами с точками M и N; центры тяжести гирь совпадают с концами пружин. Расстояние конца каждой пружины от оси O, перпендикулярной плоскости рисунка, в ненапряженном состоянии равно 5 см, изменение длины пружины на 1 см вызывается силой в 200 Н. Определить расстояние центров тяжести гирь от оси O, когда регулятор, равномерно вращаясь вокруг оси O, делает 120 об/мин.
СМОТРЕТЬ РЕШЕНИЕ

26.33 Предохранительный выключатель паровых турбин состоит из пальца A массы m=0,225 кг, помещенного в отверстии, просверленном в передней части вала турбины перпендикулярно оси, и отжимаемого внутрь пружиной; центр тяжести пальца отстоит от оси вращения вала на расстоянии l=8,5 мм при нормальной скорости вращения турбины n=1500 об/мин. При увеличении числа оборотов на 10% палец преодолевает реакцию пружины, отходит от своего нормального положения на расстояние x=4,5 мм, задевает конец рычага B и освобождает собачку C, связанную системой рычагов с пружиной, закрывающей клапан парораспределительного механизма турбины. Определить жесткость пружины, удерживающей тело A, т.е. силу, необходимую для сжатия ее на 1 см, считая реакцию пружины пропорциональной ее сжатию.
СМОТРЕТЬ РЕШЕНИЕ

26.34 Точка массы m движется по эллипсу x2/a2+y2/b2=1. Ускорение точки параллельно оси y. При t=0 координаты точки были x=0, y=b, начальная скорость v0. Определить силу, действующую на движущуюся точку в каждой точке ее траектории.
СМОТРЕТЬ РЕШЕНИЕ

26.35 Шарик массы m закреплен на конце вертикального упругого стержня, зажатого нижним концом в неподвижной стойке. При небольших отклонениях стержня от его вертикального равновесного положения можно приближенно считать, что центр шарика движется в горизонтальной плоскости Oxy, проходящей через верхнее равновесное положение центра шарика. Определить закон изменения силы, с которой упругий, изогнутый стержень действует на шарик, если выведенный из своего положения равновесия, принятого за начало координат, шарик движется согласно уравнениям x=a cos kt, y=b sin kt, где a, b, k — постоянные величины.
СМОТРЕТЬ РЕШЕНИЕ
Дифференциальные уравнения движения
27.1 Камень падает в шахту без начальной скорости. Звук от удара камня о дно шахты услышан через 6,5 с от момента начала его падения. Скорость звука равна 330 м/с. Найти глубину шахты.
СМОТРЕТЬ РЕШЕНИЕ

27.2 Тяжелое тело спускается по гладкой плоскости, наклоненной под углом 30° к горизонту. Найти, за какое время тело пройдет путь 9,6 м, если в начальный момент его скорость равнялась 2 м/с.
СМОТРЕТЬ РЕШЕНИЕ

27.3 При выстреле из орудия снаряд вылетает с горизонтальной скоростью 570 м/с. Масса снаряда 6 кг. Как велико среднее давление пороховых газов, если снаряд проходит внутри орудия 2 м? Сколько времени движется снаряд в стволе орудия, если считать давление газов постоянным?
СМОТРЕТЬ РЕШЕНИЕ

27.4 Тело массы m вследствие полученного толчка прошло по негладкой горизонтальной плоскости за 5 с расстояние s=24,5 м и остановилось. Определить коэффициент трения f.
СМОТРЕТЬ РЕШЕНИЕ

27.5 За какое время и на каком расстоянии может быть остановлен тормозом вагон трамвая, идущий по горизонтальному пути со скоростью 10 м/с, если сопротивление движению, развиваемое при торможении, составляет 0,3 веса вагона.
СМОТРЕТЬ РЕШЕНИЕ

27.6 Принимая в первом приближении сопротивление откатника постоянным, определить продолжительность отката ствола полевой пушки, если начальная скорость отката равна 10 м/с, а средняя длина отката равна 1 м.
СМОТРЕТЬ РЕШЕНИЕ

27.7 Тяжелая точка поднимается по негладкой наклонной плоскости, составляющей угол α=30° с горизонтом. В начальный момент скорость точки равнялась v0=15 м/с. Коэффициент трения f=0,1. Какой путь пройдет точка до остановки? За какое время точка пройдет этот путь?
СМОТРЕТЬ РЕШЕНИЕ

27.8 По прямолинейному железнодорожному пути с углом наклона α=10° вагон катится с постоянной скоростью. Считая сопротивление трения пропорциональным нормальному давлению, определить ускорение вагона и его скорость через 20 с после начала движения, если он начал катиться без начальной скорости по пути с углом наклона β=15°. Определить также, какой путь пройдет вагон за это время.
СМОТРЕТЬ РЕШЕНИЕ

27.9 Найти наибольшую скорость падения шара массы 10 кг и радиуса r=8 см, принимая, что сопротивление воздуха равно R=kσv2, где v — скорость движения, σ — площадь проекции тела на плоскость, перпендикулярную направлению его движения, и k — численный коэффициент, зависящий от формы тела и имеющий для шара значение 0,24 Н*с2/м4.
СМОТРЕТЬ РЕШЕНИЕ

27.10 Два геометрически равных и однородных шара сделаны из различных материалов. Плотности материала шаров соответственно равны γ1 и γ2. Оба шара падают в воздухе. Считая сопротивление среды пропорциональным квадрату скорости, определить отношение максимальных скоростей шаров.
СМОТРЕТЬ РЕШЕНИЕ

27.11 При скоростном спуске лыжник массы 90 кг скользил по склону в 45°, не отталкиваясь палками. Коэффициент трения лыж о снег f=0,1. Сопротивление воздуха движению лыжника пропорционально квадрату скорости лыжника и при скорости в 1 м/с равно 0,635 Н. Какую наибольшую скорость мог развить лыжник? Насколько увеличится максимальная скорость, если подобрав лучшую мазь, лыжник уменьшит коэффициент трения до 0,05?
СМОТРЕТЬ РЕШЕНИЕ

27.12 Корабль движется, преодолевая сопротивление воды, пропорциональное квадрату скорости и равное 1200 Н при скорости в 1 м/с. Сила упора винтов направлена по скорости движения и изменяется по закону T=12*10^5(1-v/33) Н, где v — скорость корабля, выраженная в м/с. Определить наибольшую скорость, которую может развить корабль.
СМОТРЕТЬ РЕШЕНИЕ

27.13 Самолет летит горизонтально. Сопротивление воздуха пропорционально квадрату скорости и равно 0,5 Н при скорости в 1 м/с. Сила тяги постоянна, равна 30760 Н и составляет угол в 10° с направлением полета. Определить наибольшую скорость самолета.
СМОТРЕТЬ РЕШЕНИЕ

27.14 Самолет массы 10^4 кг приземляется на горизонтальное поле на лыжах. Летчик подводит самолет к поверхности без вертикальной скорости и вертикального ускорения в момент приземления. Сила лобового сопротивления пропорциональна квадрату скорости и равна 10 Н при скорости в 1 м/с. Подъемная сила пропорциональна квадрату скорости и равна 30 Н при скорости в 1 м/с. Определить длину и время пробега самолета до остановки, приняв коэффициент трения f=0,1.
СМОТРЕТЬ РЕШЕНИЕ

27.15 Самолет начинает пикировать без начальной вертикальной скорости. Сила сопротивления воздуха пропорциональна квадрату скорости. Найти зависимость между вертикальной скоростью в данный момент, пройденным путем и максимальной скоростью пикирования.
СМОТРЕТЬ РЕШЕНИЕ

27.16 На какую высоту H и за какое время T поднимется тело веса p, брошенное вертикально вверх со скоростью v0, если сопротивление воздуха может быть выражено формулой k2pv2, где v — величина скорости тела?
СМОТРЕТЬ РЕШЕНИЕ

27.17 Тело массы 2 кг, брошенное вертикально вверх со скоростью 20 м/с, испытывает сопротивление воздуха, которое при скорости v м/с равно 0,4v Н. Найти, через сколько секунд тело достигнет наивысшего положения.
СМОТРЕТЬ РЕШЕНИЕ

27.18 Подводная лодка, не имевшая хода, получив небольшую отрицательную плавучесть p, погружается на глубину, двигаясь поступательно. Сопротивление воды при небольшой отрицательной плавучести можно принять пропорциональным первой степени скорости погружения и равным kSv, где k — коэффициент пропорциональности, S — площадь горизонтальной проекции лодки, v — величина скорости погружения. Масса лодки равна M. Определить скорость погружения v, если при t=0 скорость v0=0.
СМОТРЕТЬ РЕШЕНИЕ

27.19 При условиях предыдущей задачи определить путь z, пройденный погружающейся лодкой за время T.
СМОТРЕТЬ РЕШЕНИЕ

27.20 Какова должна быть постоянная тяга винта T при горизонтальном полете самолета, чтобы, пролетев s метров, самолет увеличил свою скорость с v0 м/с до v1 м/с. Тяга винта направлена по скорости полета. Сила лобового сопротивления, направленная в сторону, противоположную скорости, пропорциональна квадрату скорости и равна α Н при скорости в 1 м/с. Масса самолета M кг.
СМОТРЕТЬ РЕШЕНИЕ

27.21 Корабль массы 10^7 кг движется со скоростью 16 м/с. Сопротивление воды пропорционально квадрату скорости корабля и равно 3*10^5 Н при скорости 1 м/с. Какое расстояние пройдет корабль, прежде чем скорость его станет равной 4 м/с? За какое время корабль пройдет это расстояние?
СМОТРЕТЬ РЕШЕНИЕ

27.22 Тело падает в воздухе без начальной скорости. Сопротивление воздуха R=k2pv2, где v — величина скорости тела, p — вес тела. Какова будет скорость тела по истечении времени t после начала движения? Каково предельное значение скорости?
СМОТРЕТЬ РЕШЕНИЕ

27.23 Корабль массы 1,5*10^6 кг преодолевает сопротивление воды, равное R=αv2 Н, где v — скорость корабля в м/с, а α — постоянный коэффициент, равный 1200. Сила упора винтов направлена по скорости в сторону движения и изменяется по закону T=1,2*106(1-v/33) Н. Найти зависимость скорости корабля от времени, если начальная скорость равна v0 м/с.
СМОТРЕТЬ РЕШЕНИЕ

27.24 В предыдущей задаче найти зависимость пройденного пути от скорости.
СМОТРЕТЬ РЕШЕНИЕ

27.25 В задаче 27.23 найти зависимость пути от времени при начальной скорости v0=10 м/с.
СМОТРЕТЬ РЕШЕНИЕ

27.26 Вагон массы 9216 кг приходит в движение вследствие действия ветра, дующего вдоль полотна, и движется по горизонтальному пути. Сопротивление движению вагона равно 1/200 его веса. Сила давления ветра P=kSu2, где S — площадь задней стенки вагона, подверженной давлению ветра, равная 6 м2, u — скорость ветра относительно вагона, a k=1,2. Абсолютная скорость ветра v=12 м/с. Считая начальную скорость вагона равной нулю, определить: 1) наибольшую скорость vmax вагона; 2) время T, которое потребовалось бы для достижения этой скорости; 3) на каком расстоянии x вагон наберет скорость 3 м/с.
СМОТРЕТЬ РЕШЕНИЕ

27.27 Найти уравнение движения точки массы m, падающей без начальной скорости на Землю. Сопротивление воздуха пропорционально квадрату скорости. Коэффициент пропорциональности равен k.
СМОТРЕТЬ РЕШЕНИЕ

27.28 Буер, весящий вместе с пассажирами Q=1962 H, движется прямолинейно по гладкой горизонтальной поверхности льда вследствие давления ветра на парус, плоскость которого ab образует угол 45° с направлением движения. Абсолютная скорость w ветра перпендикулярна направлению движения. Величина силы давления ветра P выражается формулой Ньютона: P=kSu2 cos2 φ, где φ — угол, образуемый относительной скоростью ветра u с перпендикуляром N к плоскости паруса, S=5 м2 — площадь паруса, k=0,113 — опытный коэффициент. Сила давления P направлена перпендикулярно плоскости ab. Пренебрегая трением, найти: 1) какую наибольшую скорость vmax может получить буер; 2) какой угол α составляет при этой скорости помещенный на мачте флюгер с плоскостью паруса; 3) какой путь x1 должен пройти буер для того, чтобы приобрести скорость v=2/3 w, если его начальная скорость равна нулю.
СМОТРЕТЬ РЕШЕНИЕ

27.29 Вожатый трамвая, выключая постепенно реостат, увеличивает мощность вагонного двигателя так, что сила тяги возрастает от нуля пропорционально времени, увеличиваясь на 1200 Н в течение каждой секунды. Найти зависимость пройденного пути от времени движения вагона при следующих данных: масса вагона 10000 кг, сопротивление трения постоянно и составляет 0,02 веса вагона, а начальная скорость равна нулю.
СМОТРЕТЬ РЕШЕНИЕ

27.30 Тело массы 1 кг движется под действием переменной силы F=10(1-t) Н, где время t — в секундах. Через сколько секунд тело остановится, если начальная скорость тела v0=20 м/с и сила совпадает по направлению со скоростью тела? Какой путь пройдет тело до остановки?
СМОТРЕТЬ РЕШЕНИЕ

27.31 Материальная точка массы m совершает прямолинейное движение под действием силы, изменяющейся по закону F=F0 cos ωt, где F0 и ω — постоянные величины. В начальный момент точка имела скорость x0=v0. Найти уравнение движения точки.
СМОТРЕТЬ РЕШЕНИЕ

27.32 Частица массы m, несущая заряд электричества e, находится в однородном электрическом поле с переменным напряжением E=A sin kt (А и k — заданные постоянные). Определить движение частицы, если известно, что в электрическом поле на частицу действует сила F=eE, направленная в сторону напряжения E. Влиянием силы тяжести пренебречь. Начальное положение частицы принять за начало координат; начальная скорость частицы равна нулю.
СМОТРЕТЬ РЕШЕНИЕ

27.33 Определить движение тяжелого шарика вдоль воображаемого прямолинейного канала, проходящего через центр Земли, если принять, что сила притяжения внутри земного шара пропорциональна расстоянию движущейся точки от центра Земли и направлена к этому центру; шарик опущен в канал с поверхности Земли без начальной скорости. Указать также скорость шарика при прохождении через центр Земли и время движения до этого центра. Радиус Земли равен R=6,37*10^6 м, ускорение силы притяжения на поверхности Земли принять равным g=9,8 м/с2.
СМОТРЕТЬ РЕШЕНИЕ

27.34 Тело падает на Землю с высоты h без начальной скорости. Сопротивлением воздуха пренебречь, а силу притяжения Земли считать обратно пропорциональной квадрату расстояния тела от центра Земли. Найти время T, по истечении которого тело достигнет поверхности Земли. Какую скорость v оно приобретет за это время? Радиус Земли равен R; ускорение силы тяжести у поверхности Земли равно g.
СМОТРЕТЬ РЕШЕНИЕ

27.35 Материальная точка массы m отталкивается от центра силой, пропорциональной расстоянию (коэффициент пропорциональности mk2). Сопротивление среды пропорционально скорости движения (коэффициент пропорциональности 2mk1). В начальный момент точка находилась на расстоянии a от центра, и ее скорость в этот момент равнялась нулю. Найти закон движения точки.
СМОТРЕТЬ РЕШЕНИЕ

27.36 Точка массы m начинает двигаться без начальной скорости из положения x=β прямолинейно (вдоль оси x) под действием силы притяжения к началу координат, изменяющейся по закону R=α/x2. Найти момент времени, когда точка окажется в положении x1=β/2. Определить скорость точки в этом положении.
СМОТРЕТЬ РЕШЕНИЕ

27.37 Точка массы m начинает двигаться из состояния покоя из положения x0=a прямолинейно под действием силы притяжения, пропорциональной расстоянию от начала координат: Fx=-c1mx, и силы отталкивания, пропорциональной кубу расстояния: Qx=c2mx3. При каком соотношении c1, c2, a точка достигает начала координат и остановится?
СМОТРЕТЬ РЕШЕНИЕ

27.38 При движении тела в неоднородной среде сила сопротивления изменяется по закону F=-2v2/(3+s) Н, где v — скорость тела в м/с, а s — пройденный путь в метрах. Определить пройденный путь как функцию времени, если начальная скорость v0=5 м/с.
СМОТРЕТЬ РЕШЕНИЕ

27.39 Морское орудие выбрасывает снаряд массы 18 кг со скоростью v0=700 м/с, действительная траектория снаряда в воздухе изображена на рисунке в двух случаях: 1) когда угол, составляемый осью орудия с горизонтом, равен 45° и 2) когда этот угол равен 75°. Для каждого из указанных двух случаев определить, на сколько километров увеличилась бы высота и дальность полета, если бы снаряд не испытывал сопротивления воздуха.
СМОТРЕТЬ РЕШЕНИЕ

27.40 Самолет А летит на высоте 4000 м над землей с горизонтальной скоростью 140 м/с. На каком расстоянии x, измеряемом по горизонтальной прямой от данной точки B, должен быть сброшен с самолета без начальной относительной скорости какой-либо груз для того, чтобы он упал в эту точку? Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.41 Самолет A летит над землей на высоте h с горизонтальной скоростью v1. Из орудия B произведен выстрел по самолету в тот момент, когда самолет находится на одной вертикали с орудием. Найти: 1) какому условию должна удовлетворять начальная скорость v0 снаряда для того, чтобы он мог попасть в самолет, и 2) под каким углом α к горизонту должен быть сделан выстрел. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.42 Наибольшая горизонтальная дальность снаряда равна L. Определить его горизонтальную дальность l при угле бросания α=30° и высоту h траектории в этом случае. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.43 При угле бросания α снаряд имеет горизонтальную дальность lα. Определить горизонтальную дальность при угле бросания, равном α/2. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.44 Определить угол наклона ствола орудия к горизонту, если цель обнаружена на расстоянии 32 км, а начальная скорость снаряда v0=600 м/с. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.45 Решить предыдущую задачу в том случае, когда цель будет находиться на высоте 200 м над уровнем артиллерийских позиций.
СМОТРЕТЬ РЕШЕНИЕ

27.46 Из орудия, находящегося в точке O, произвели выстрел под углом α к горизонту с начальной скоростью v0. Одновременно из точки A, находящейся на расстоянии l по горизонтали от точки O, произвели выстрел вертикально вверх. Определить, с какой начальной скоростью v1 надо выпустить второй снаряд, чтобы он столкнулся с первым снарядом, если скорость v0 и точка A лежат в одной вертикальной плоскости. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.47 Найти геометрическое место положений в момент t материальных точек, одновременно брошенных в вертикальной плоскости из одной точки с одной и той же начальной скоростью v0 под всевозможными углами к горизонту.
СМОТРЕТЬ РЕШЕНИЕ

27.48 Найти геометрическое место фокусов всех параболических траекторий, соответствующих одной и той же начальной скорости v0 и всевозможным углам бросания.
СМОТРЕТЬ РЕШЕНИЕ

27.49 Тело веса P, брошенное с начальной скоростью v0 под углом α к горизонту, движется под влиянием силы тяжести и сопротивления R воздуха. Определить наибольшую высоту h тела над уровнем начального положения, считая сопротивление пропорциональным первой степени скорости: R=kPv.
СМОТРЕТЬ РЕШЕНИЕ

27.50 В условиях задачи 27.49 найти уравнения движения точки.
СМОТРЕТЬ РЕШЕНИЕ

27.51 При условиях задачи 27.49 определить, на каком расстоянии s по горизонтали точка достигнет наивысшего положения.
СМОТРЕТЬ РЕШЕНИЕ

27.52 В вертикальной трубе, помещенной в центре круглого бассейна и наглухо закрытой сверху, на высоте 1 м сделаны отверстия в боковой поверхности трубы, из которых выбрасываются наклонные струи воды под различными углами φ к горизонту (φ<π/2); начальная скорость струи равна v0=√(4g/(3 cos φ)) м/с, где g — ускорение силы тяжести; высота трубы 1 м. Определить наименьший радиус R бассейна, при котором вся выбрасываемая трубой вода падает в бассейн, как бы мала ни была высота его стенки.
СМОТРЕТЬ РЕШЕНИЕ

27.53 Определить движение тяжелой материальной точки, масса которой равна m, притягиваемой к неподвижному центру O силой, прямо пропорциональной расстоянию. Движение происходит в пустоте; сила притяжения на единице расстояния равна k2m; в момент t=0: x=a, x =0, y=0, y =0, причем ось Oy направлена по вертикали вниз.
СМОТРЕТЬ РЕШЕНИЕ

27.54 Точка массы m движется под действием силы отталкивания от неподвижного центра O, изменяющейся по закону F=k2mr, где r — радиус-вектор точки. В начальный момент точка находилась в M0(a, 0) и имела скорость v0, направленную параллельно оси y. Определить траекторию точки.
СМОТРЕТЬ РЕШЕНИЕ

27.55 Упругая нить, закрепленная в точке A, проходит через неподвижное гладкое кольцо O; к свободному концу ее прикреплен шарик M, масса которого равна m. Длина невытянутой нити l=AO; для удлинения нити на 1 м нужно приложить силу, равную k2m. Вытянув нить по прямой AB так, что длина ее увеличилась вдвое, сообщили шарику скорость v0, перпендикулярную прямой AB. Определить траекторию шарика, пренебрегая действием силы тяжести и считая натяжение нити пропорциональным ее удлинению.
СМОТРЕТЬ РЕШЕНИЕ

27.56 Точка М, масса которой равна m, притягивается к n неподвижным центрам C1, С2, ..., Сn силами, пропорциональными расстояниям; сила притяжения точки M к центру Сi (i=1, 2, ..., n) равна kim*MCi Н; точка М и притягивающие центры лежат в плоскости Оху. Определить траекторию точки М, если при t=0: x=х0, y=y0, х =0, у =v0. Действием силы тяжести пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.57 Точка M притягивается к двум центрам C1 и C2 силами, пропорциональными расстояниям: km*MC1 и km*MC2; центр C1 неподвижен и находится в начале координат, центр C2 равномерно движется по оси Ox, так что x2=2(a+bt). Найти траекторию точки M, полагая, что в момент t=0 точка M находится в плоскости xy, координаты ее x=y=a и скорость имеет проекции x = z = b, y = 0.
СМОТРЕТЬ РЕШЕНИЕ

27.58 Частица массы m, несущая заряд отрицательного электричества e, вступает в однородное электрическое поле напряжения E со скоростью v0, перпендикулярной направлению напряжения поля. Определить траекторию дальнейшего движения частицы, зная, что в электрическом поле на нее действует сила F=eE, направленная в сторону, противоположную напряжению E; действием силы тяжести пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

27.59 Частица массы m, несущая заряд отрицательного электричества e, вступает в однородное магнитное поле напряжения H со скоростью v0, перпендикулярной направлению напряжения поля. Определить траекторию дальнейшего движения частицы, зная, что на частицу действует сила F=-e(v×H). При решении удобно пользоваться уравнениями движения точки в проекциях на касательную и на главную нормаль к траектории.
СМОТРЕТЬ РЕШЕНИЕ

27.60 Определить траекторию движения частицы массы m, несущей заряд e электричества, если частица вступила в однородное электрическое поле с переменным напряжением E=A cos kt (A и k — заданные постоянные) со скоростью v0, перпендикулярной направлению напряжения поля; влиянием силы тяжести пренебречь. В электрическом поле на частицу действует сила F=-eE.
СМОТРЕТЬ РЕШЕНИЕ

27.61 По негладкой наклонной плоскости движется тяжелое тело M, постоянно оттягиваемое посредством нити в горизонтальном направлении, параллельно прямой AB. С некоторого момента движение тела становится прямолинейным и равномерным, причем из двух взаимно перпендикулярных составляющих скорости та, которая направлена параллельно AB, равна 12 м/с. Определить вторую составляющую v1 скорости, а также натяжение T нити при следующих данных: уклон плоскости tg α=1/30, коэффициент трения f=0,1, масса тела 30 кг.
СМОТРЕТЬ РЕШЕНИЕ

27.62 Точка M массы m находится под действием двух сил притяжения, направленных к неподвижным центрам O1 и O2 (см. рисунок). Величина этих сил пропорциональна расстоянию от точек O1 и O2. Коэффициент пропорциональности одинаков и равен c. Движение начинается в точке A0 со скоростью v0, перпендикулярной линии O1O2. Определить, какую траекторию опишет точка M. Найти моменты времени, когда она пересекает направление линии O1O2, и вычислить ее координаты в эти моменты времени. Расстояние от точки A0 до оси y равно 2a.
СМОТРЕТЬ РЕШЕНИЕ

27.63 На точку A массы m, которая начинает движение из положения r=r0 (где r — радиус-вектор точки) со скоростью v0, перпендикулярной r0, действует сила притяжения, направленная к центру O и пропорциональная расстоянию от него. Коэффициент пропорциональности равен mc1. Кроме того, на точку действует постоянная сила mcr0. Найти уравнение движения и траекторию точки. Каково должно быть отношение c1/c, чтобы траектория движения проходила через центр O? С какой скоростью точка пройдет центр О?
СМОТРЕТЬ РЕШЕНИЕ

27.64 Тяжелая точка массы m падает из положения, определяемого координатами x0=0, y0=h при t=0, под действием силы тяжести (параллельной оси y) и силы отталкивания от оси y, пропорциональной расстоянию от этой оси (коэффициент пропорциональности c). Проекции начальной скорости точки на оси координат равны vx=v0, vy=0. Определить траекторию точки, а также момент времени t1 пересечения оси x.
СМОТРЕТЬ РЕШЕНИЕ

27.65 Точка M массы m движется под действием силы тяжести по гладкой внутренней поверхности полого цилиндра радиуса r. В начальный момент угол φ0=π/2, а скорость точки равнялась нулю. Определить скорость точки M и реакцию поверхности цилиндра при угле φ=30°.
СМОТРЕТЬ РЕШЕНИЕ
Теорема об изменении количества движения материальной точки. Теорема об изменении момента количества движения материальной точки
28.1 Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути. При торможении развивается сила сопротивления, равная 0,1 веса поезда. В момент начала торможения скорость поезда равняется 20 м/с. Найти время торможения и тормозной путь.
СМОТРЕТЬ РЕШЕНИЕ

28.2 По шероховатой наклонной плоскости, составляющей с горизонтом угол α=30°, спускается тяжелое тело без начальной скорости. Определить, в течение какого времени T тело пройдет путь длины l=39,2 м, если коэффициент трения f=0,2.
СМОТРЕТЬ РЕШЕНИЕ

28.3 Поезд массы 4*10^5 кг входит на подъем i=tg α=0,006 (где α — угол подъема) со скоростью 15 м/с. Коэффициент трения (коэффициент суммарного сопротивления) при движении поезда равен 0,005. Через 50 с после входа поезда на подъем его скорость падает до 12,5 м/с. Найти силу тяги тепловоза.
СМОТРЕТЬ РЕШЕНИЕ

28.4 Гирька М привязана к концу нерастяжимой нити MOA, часть которой OA пропущена через вертикальную трубку; гирька движется вокруг оси трубки по окружности радиуса MC=R, делая 120 об/мин. Медленно втягивая нить OA в трубку, укорачивают наружную часть нити до длины OM1, при которой гирька описывает окружность радиусом R/2. Сколько оборотов в минуту делает гирька по этой окружности?
СМОТРЕТЬ РЕШЕНИЕ

28.5 Для определения массы груженого железнодорожного состава между тепловозами и вагонами установили динамометр. Среднее показание динамометра за 2 мин оказалось 10^6 Н. За то же время состав набрал скорость 16 м/с (вначале состав стоял на месте). Найти массу состава, если коэффициент трения f=0,02.
СМОТРЕТЬ РЕШЕНИЕ

28.6 Каков должен быть коэффициент трения f колес заторможенного автомобиля о дорогу, если при скорости езды v=20 м/с он останавливается через 6 с после начала торможения.
СМОТРЕТЬ РЕШЕНИЕ

28.7 Пуля массы 20 г вылетает из ствола винтовки со скоростью v=650 м/с, пробегая канал ствола за время t=0,00095 c. Определить среднюю величину давления газов, выбрасывающих пулю, если площадь сечения канала σ=150 мм^2.
СМОТРЕТЬ РЕШЕНИЕ

28.8 Точка M движется вокруг неподвижного центра под действием силы притяжения к этому центру. Найти скорость v2 в наиболее удаленной от центра точке траектории, если скорость точки в наиболее близком к нему положении v1=30 см/с, а r2 в пять раз больше r1.
СМОТРЕТЬ РЕШЕНИЕ

28.9 Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение М. Дано: v0=500 м/с; α0=60°; v1=200 м/с; масса снаряда 100 кг.
СМОТРЕТЬ РЕШЕНИЕ

28.10 Два астероида М1 и М2 описывают один и тот же эллипс, в фокусе которого S находится Солнце. Расстояние между ними настолько мало, что дугу М1М2 эллипса можно считать отрезком прямой. Известно, что длина дуги М1М2 равнялась a, когда середина ее находилась в перигелии P. Предполагая, что астероиды движутся с равными секториальными скоростями, определить длину дуги М1М2, когда середина ее будет проходить через афелий A, если известно, что SP=R1 и SA=R2.
СМОТРЕТЬ РЕШЕНИЕ

28.11 Мальчик массы 40 кг стоит на полозьях спортивных саней, масса которых равна 20 кг, и делает каждую секунду толчок с импульсом 20 Н*с. Найти скорость, приобретаемую санями за 15 c, если коэффициент трения f=0,01.
СМОТРЕТЬ РЕШЕНИЕ

28.12 Точка совершает равномерное движение по окружности со скоростью v=0,2 м/с, делая полный оборот за время T=4 c. Найти импульс S сил, действующих на точку, за время одного полупериода, если масса точки m=5 кг. Определить среднее значение силы F.
СМОТРЕТЬ РЕШЕНИЕ

28.13 Два математических маятника, подвешенных на нитях длин l1 и l2 (l1>l2), совершают колебания одинаковой амплитуды. Оба маятника одновременно начали двигаться в одном направлении из своих крайних отклоненных положений. Найти условие, которому должны удовлетворять длины l1 и l2 для того, чтобы маятники по истечении некоторого промежутка времени одновременно вернулись в положение равновесия. Определить наименьший промежуток времени T.
СМОТРЕТЬ РЕШЕНИЕ

28.14 Шарик массы m, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью a в отверстие, сделанное на плоскости. Определить движение шарика и натяжение нити T, если известно, что в начальный момент нить расположена по прямой, расстояние между шариком и отверстием равно R, а проекция начальной скорости шарика на перпендикуляр к направлению нити равна v0.
СМОТРЕТЬ РЕШЕНИЕ

28.15 Определить массу M Солнца, имея следующие данные: радиус Земли R=6,37*106 м, средняя плотность 5,5 т/м3, большая полуось земной орбиты a=1,49*10^11 м, время обращения Земли вокруг Солнца T=365,25 сут. Силу всемирного тяготения между двумя массами, равными 1 кг, на расстоянии 1 м считаем равной gR2/m Н, где m — масса Земли; из законов Кеплера следует, что сила притяжения Земли Солнцем равна 4π2a3m/(T2r2), где r — расстояние Земли от Солнца.
СМОТРЕТЬ РЕШЕНИЕ

28.16 Точка массы m, подверженная действию центральной силы F, описывает лемнискату r2=a cos 2φ, где a — величина постоянная, r — расстояние точки от силового центра; в начальный момент r=r0, скорость точки равна v0 и составляет угол α с прямой, соединяющей точку с силовым центром. Определить величину силы F, зная, что она зависит только от расстояния r. По формуле Бине F =-(mc2/r2)(d2(1/r)/dφ2+1/r), где c — удвоенная секторная скорость точки.
СМОТРЕТЬ РЕШЕНИЕ

28.17 Точка M, масса которой m, движется около неподвижного центра O под влиянием силы F, исходящей из этого центра и зависящей только от расстояния MO=r. Зная, что скорость точки v=a/r, где a — величина постоянная, найти величину силы F и траекторию точки.
СМОТРЕТЬ РЕШЕНИЕ

28.18 Определить движение точки, масса которой 1 кг, под действием центральной силы притяжения, обратно пропорциональной кубу расстояния точки от центра притяжения, при следующих данных: на расстоянии 1 м сила равна 1 Н. В начальный момент расстояние точки от центра притяжения равно 2 м, скорость v0=0,5 м/с и составляет угол 45° с направлением прямой, проведенной из центра к точке.
СМОТРЕТЬ РЕШЕНИЕ

28.19 Частица M массы 1 кг притягивается к неподвижному центру O силой, обратно пропорциональной пятой степени расстояния. Эта сила равна 8 Н на расстоянии 1 м. В начальный момент частица находится на расстоянии OM0=2 м и имеет скорость, перпендикулярную к OM0 и равную 0,5 м/с. Определить траекторию частицы.
СМОТРЕТЬ РЕШЕНИЕ

28.20 Точка массы 0,2 кг, движущаяся под влиянием силы притяжения к неподвижному центру по закону тяготения Ньютона, описывает полный эллипс с полуосями 0,1 м и 0,08 м в течение 50 c. Определить наибольшую и наименьшую величины силы притяжения F при этом движении.
СМОТРЕТЬ РЕШЕНИЕ

28.21 Математический маятник, каждый размах которого длится одну секунду, называется секундным маятником и применяется для отсчета времени. Найти длину l этого маятника, считая ускорение силы тяжести равным 981 см/с2. Какое время покажет этот маятник на Луне, где ускорение силы тяжести в 6 раз меньше земного? Какую длину l1 должен иметь секундный лунный маятник?
СМОТРЕТЬ РЕШЕНИЕ

28.22 В некоторой точке Земли секундный маятник отсчитывает время правильно. Будучи перенесен в другое место, он отстает на T секунд в сутки. Определить ускорение силы тяжести в новом положении секундного маятника.
СМОТРЕТЬ РЕШЕНИЕ
Работа и мощность
29.1 Бетонный блок ABCD, размеры которого указаны на рисунке, имеет массу 4000 кг. Определить работу, которую надо затратить на опрокидывание его вращением вокруг ребра D.
СМОТРЕТЬ РЕШЕНИЕ

29.2 Определить наименьшую работу, которую надо затратить для того, чтобы поднять на 5 м тело массы 2 т, двигая его по наклонной плоскости, составляющей с горизонтом угол в 30°. Коэффициент трения 0,5.
СМОТРЕТЬ РЕШЕНИЕ

29.3 Для того чтобы поднять 5000 м3 воды на высоту 3 м, поставлен насос с двигателем в 2 л. c. Сколько времени потребуется для выполнения этой работы, если коэффициент полезного действия насоса 0,8? Коэффициентом полезного действия называется отношение полезной работы, в данном случае работы, затраченной на поднятие воды, к работе движущей силы, которая должна быть больше полезной работы вследствие вредных сопротивлений.
СМОТРЕТЬ РЕШЕНИЕ

29.4 Как велика мощность машины, поднимающей 84 раза в минуту молот массы 200 кг на высоту 0,75 м, если коэффициент полезного действия машины 0,7?
СМОТРЕТЬ РЕШЕНИЕ

29.5 Вычислить общую мощность трех водопадов, расположенных последовательно на одной реке. Высота падения воды: у первого водопада — 12 м, у второго — 12,8 м, у третьего — 15 м. Средний расход воды в реке — 75,4 м3/с.
СМОТРЕТЬ РЕШЕНИЕ

29.6 Вычислить мощность турбогенераторов на станции трамвайной сети, если число вагонов на линии 45, масса каждого вагона 10 т, сопротивление трения равно 0,02 веса вагона, средняя скорость вагона 3,3 м/с и потери в сети 5%.
СМОТРЕТЬ РЕШЕНИЕ

29.7 Вычислить работу, которая производится при подъеме груза массы 20 кг по наклонной плоскости на расстоянии 6 м, если угол образуемый плоскостью с горизонтом, равен 30°, а коэффициент трения равен 0,01.
СМОТРЕТЬ РЕШЕНИЕ

29.8 Когда турбоход идет со скоростью 15 узлов, турбина его развивает мощность 3800 кВт. Определить силу сопротивления воды движению турбохода зная, что коэффициент полезного действия турбины и винта равен 0,41 и 1 узел = 0,5144 м/с.
СМОТРЕТЬ РЕШЕНИЕ

29.9 Найти мощность двигателя внутреннего сгорания, если среднее давление на поршень в течение всего хода равно 49 Н на 1 см2, длина хода поршня 40 см, площадь поршня 300 см2, число рабочих ходов 120 в минуту и коэффициент полезного действия 0,9.
СМОТРЕТЬ РЕШЕНИЕ

29.10 Шлифовальный круг диаметра 0,6 м делает 120 об/мин. Потребляемая мощность 1,2 кВт. Коэффициент трения шлифовального круга о деталь равен 0,2. С какой силой круг прижимает шлифуемую деталь?
СМОТРЕТЬ РЕШЕНИЕ

29.11 Определить мощность двигателя продольно-строгального станка, если длина рабочего хода 2 м, его продолжительность 10 c, сила резания 11,76 кН, коэффициент полезного действия станка 0,8. Движение считать равномерным.
СМОТРЕТЬ РЕШЕНИЕ

29.12 К концу упругой пружины подвешен груз массы M. Для растяжения пружины на 1 м надо приложить силу в c Н. Составить выражение полной механической энергии груза на пружине. Движение отнести к оси x, проведенной вертикально вниз из положения равновесия груза на пружине.
СМОТРЕТЬ РЕШЕНИЕ

29.13 При ходьбе на лыжах на дистанцию в 20 км по горизонтальному пути центр тяжести лыжника совершал гармонические колебания с амплитудой 8 см и с периодом T=4 c, масса лыжника 80 кг, а коэффициент трения лыж о снег f=0,05. Определить работу лыжника на марше, если всю дистанцию он прошел за 1 час 30 мин, а также среднюю мощность лыжника. Примечание. Считать, что работа торможения при опускании центра тяжести лыжника составляет 0,4 работы при подъеме центра тяжести на ту же высоту.
СМОТРЕТЬ РЕШЕНИЕ

29.14 Математический маятник A веса P и длины l под действием горизонтальной силы Px/l поднялся на высоту y. Вычислить потенциальную энергию маятника двумя способами: 1) как работу силы тяжести, 2) как работу, произведенную силой Px/l, и указать, при каких условиях оба способа приводят к одинаковому результату.
СМОТРЕТЬ РЕШЕНИЕ

29.15 Для измерения мощности двигателя на его шкив A надета лента с деревянными колодками. Правая ветвь BC ленты удерживается пружинными весами Q, а левая ее ветвь DE натягивается грузом. Определить мощность двигателя, если, вращаясь равномерно, он делает 120 об/мин; при этом пружинные весы показывают натяжение правой ветви ленты в 39,24 Н; масса груза равна 1 кг, диаметр шкива d=63,6 см. Разность натяжений ветвей BC и DE ленты равна силе, тормозящей шкив. Определить работу этой силы в 1 c.
СМОТРЕТЬ РЕШЕНИЕ

29.16 Посредством ремня передается мощность 14,71 кВт. Радиус ременного шкива 0,5 м, угловая скорость шкива соответствует 150 об/мин. Предполагая, что натяжение T ведущей ветви ремня вдвое больше натяжения t ведомой ветви, определить натяжение T и t.
СМОТРЕТЬ РЕШЕНИЕ