Решение задач » Решебники онлайн » Решебники по теоретической механике онлайн » Решебник Мещерский онлайн (ГДЗ Мещерский 1986 г, решение задач)
Решебник Мещерский онлайн

Траектория и уравнения движения точки
10.1 По данному уравнению движения точки на произвольно выбранной траектории построить через равные промежутки времени шесть положений точки, определить расстояние s по траектории от начала отсчета до конечного положения точки и пройденный ею путь σ за указанный промежуток времени (s и σ — в сантиметрах, t — в секундах). 1) s = 5 - 4t + t2, 0 ≤ t ≤ 5. 2) s = 1 + 2t - t2, 0 ≤ t ≤ 2,5. 3) s = 4 sin 10t, π/20 ≤ t ≤ Зπ/10.
СМОТРЕТЬ РЕШЕНИЕ

10.2 По данным уравнениям движения точки найти уравнения ее траектории в координатной форме и указать на рисунке направление движения. 1) x = 3t - 5, y = 4 - 2t. 2) x = 2t, y = 8t2. 3) x = 5 sin 10t, y = 3 cos 10t. 4) x = 2 - 3 cos 5t, y = 4 sin 5t - 1. 5) x = ch t = 1/2 (et + e-t), y = sh t = 1/2 (et - e-t).
СМОТРЕТЬ РЕШЕНИЕ

10.3 Построить траекторию точки, радиус-вектор которой изменяется согласно уравнению (r0 и e — постоянные заданные векторы, i и j — координатные орты). 1) r = r0 + t*e. 2) r = r0 + cos t*e. 3) r = ai cos(π/(1+t2)) + bj sin (π/(1+t2)).
СМОТРЕТЬ РЕШЕНИЕ

10.4 По заданным уравнениям движения точки найти уравнение ее траектории, а также указать закон движения точки по траектории, отсчитывая расстояние от начального положения точки. 1) x = 3t2, y = 4t2. 2) x = 3 sin t, y = 3 cos t. 3) x = a cos2 t, y = a sin2 t. 4) x = 5 cos 5t2, y = 5 sin 5t2.
СМОТРЕТЬ РЕШЕНИЕ

10.5 Мостовой кран движется вдоль мастерской согласно уравнению x=t; по крану катится в поперечном направлении тележка согласно уравнению y=1,5t (x и y — в метрах, t — в секундах). Цепь укорачивается со скоростью v=0,5 м/с. Определить траекторию центра тяжести груза; в начальном положении центр тяжести груза находился в горизонтальной плоскости Oxy; ось Oz направлена вертикально вверх.
СМОТРЕТЬ РЕШЕНИЕ

10.6 Движение точки, описывающей фигуру Лиссажу, задается уравнениями x=3 sin t, y=2 cos 2t (t — в секундах). Найти уравнение траектории, вычертить ее и указать направление движения точки в различные моменты времени. Указать также ближайший после начала движения момент времени t1, когда траектория пересечет ось Ox.
СМОТРЕТЬ РЕШЕНИЕ

10.7 При соответствующем выборе осей координат уравнения движения электрона в постоянном магнитном поле определяются равенствами x=a sin kt, y=a cos kt, z=vt, где a, k и v — некоторые постоянные, зависящие от напряженности магнитного поля, массы, заряда и скорости электрона. Определить траекторию электрона и закон движения его по траектории.
СМОТРЕТЬ РЕШЕНИЕ

10.8 Гармонические колебания точки определяются законом x=a sin(kt+ε), где a > 0 — амплитуда колебаний, k > 0 — круговая частота колебаний и ε (-π ≤ ε ≤ π) — начальная фаза. Определить центр колебаний a0, амплитуду, круговую частоту, период T, частоту колебаний f в герцах и начальную фазу по следующим уравнениям движения (x — в сантиметрах, f — в секундах): 1) x = -7 cos 12t. 2) x = 4 sin (πt/20) - 3 cos (πt/20). 3) x = 2 - 4 sin 140t. 4) x = 6 sin2 18t. 5) x = 1 - 4 cos2 (πt/60).
СМОТРЕТЬ РЕШЕНИЕ

10.9 Груз, поднятый на упругом канате, колеблется согласно уравнению x=a sin(kt+Зπ/2), где a — в сантиметрах, k — в рад/с. Определить амплитуду и круговую частоту колебаний груза, если период колебаний равен 0,4 с и в начальный момент x0=-4 см. Построить также кривую расстояний.
СМОТРЕТЬ РЕШЕНИЕ

10.10 Определить траекторию точки, совершающей одновременно два гармонических колебания равной частоты, но разных амплитуд и фаз, если колебания происходят по двум взаимно перпендикулярным осям: x=a sin(kt+α), y=b sin(kt+β).
СМОТРЕТЬ РЕШЕНИЕ

10.11 Найти уравнение траектории движения точки, получающегося при сложении взаимно перпендикулярных колебаний разной частоты: 1) x = a sin 2ωt, y = a sin ωt; 2) x = a cos 2ωt, y = a cos ωt.
СМОТРЕТЬ РЕШЕНИЕ

10.12 Кривошип OA вращается с постоянной угловой скоростью ω=10 рад/с. Длина OA=AB=80 см. Найти уравнения движения и траекторию средней точки M шатуна, а также уравнение движения ползуна B, если в начальный момент ползун находился в крайнем правом положении; оси координат указаны на рисунке.
СМОТРЕТЬ РЕШЕНИЕ

10.13 Определить уравнения движения и траекторию точки обода колеса радиуса R=1 м автомобиля, если автомобиль движется по прямолинейному пути с постоянной скоростью 20 м/с. Принять, что колесо катится без скольжения; за начало координат взять начальное положение точки на пути, принятом за ось Ox.
СМОТРЕТЬ РЕШЕНИЕ

10.14 Даны уравнения движения снаряда x = v0 cos α t, y = v0 sin α t - gt2/2, где v0 — начальная скорость снаряда, α — угол между v0 и горизонтальной осью x, g — ускорение силы тяжести. Определить траекторию движения снаряда, высоту H, дальность L и время T полета снаряда.
СМОТРЕТЬ РЕШЕНИЕ

10.15 В условиях предыдущей задачи определить, при каком угле бросания α дальность полета L будет максимальной. Найти соответствующие высоту и время полета.
СМОТРЕТЬ РЕШЕНИЕ

10.16 В условиях задачи 10.14 определить угол бросания α, при котором снаряд попадает в точку A с координатами x и y.
СМОТРЕТЬ РЕШЕНИЕ

10.17 Определить параболу безопасности (все точки, лежащие вне этой параболы, не могут быть достигнуты снарядом при данной начальной скорости v0 и любом угле бросания α).
СМОТРЕТЬ РЕШЕНИЕ

10.18 Точка движется по винтовой линии x = a cos kt, y = a sin kt, z = vt. Определить уравнения движения точки в цилиндрических координатах.
СМОТРЕТЬ РЕШЕНИЕ

10.19 Даны уравнения движения точки: x = 2a cos2(kt/2), y = a sin kt, где a и k — положительные постоянные. Определить траекторию и закон движения точки по траектории, отсчитывая расстояние от начального положения точки.
СМОТРЕТЬ РЕШЕНИЕ

10.20 В условиях предыдущей задачи определить уравнения движения точки в полярных координатах.
СМОТРЕТЬ РЕШЕНИЕ

10.21 По заданным уравнениям движения точки в декартовых координатах x = R cos2 (kt/2), y = (R/2) sin (kt), z = R sin (kt/2) найти ее траекторию и уравнения движения в сферических координатах.
СМОТРЕТЬ РЕШЕНИЕ

10.22 Точка участвует одновременно в двух взаимно перпендикулярных затухающих колебаниях, уравнения которых имеют вид x = Ae-ht cos(kt + ε), y = Ae-ht sin(kt + ε), где A > 0, h > 0, k > 0 и ε — некоторые постоянные. Определить уравнения движения в полярных координатах и найти траекторию точки.
СМОТРЕТЬ РЕШЕНИЕ

10.23 Плоский механизм манипулятора переносит груз из одного положения в другое по траектории, определяемой полярными координатами центра схвата rC=rC(t), φC=φC(t). Найти: 1) законы изменения углов ψ1 и ψ2, отрабатываемых соответствующими приводами, обеспечивающие выполнение заданной программы; 2) законы изменения этих углов, если груз перемещается по прямой, параллельной оси y, отстоящей от нее на расстоянии a по закону y=s(t), где s — заданная функция времени t.
СМОТРЕТЬ РЕШЕНИЕ
Скорость точки
11.1 Точка совершает гармонические колебания по закону x=a sin kt. Определить амплитуду a и круговую частоту k колебаний, если при x=x1 скорость v=v1, а при x=x2 скорость v=v2.
СМОТРЕТЬ РЕШЕНИЕ

11.2 Длина линейки эллипсографа AB=40 см, длина кривошипа OC=20 см, AC=CB. Кривошип равномерно вращается вокруг оси O с угловой скоростью ω. Найти уравнения траектории и годографа скорости точки M линейки, лежащей на расстоянии AM=10 см от конца A.
СМОТРЕТЬ РЕШЕНИЕ

11.3 Точка описывает фигуру Лиссажу согласно уравнениям x = 2 cos t, y = 4 cos 2t (x, y — в сантиметрах, t — в секундах). Определить величину и направление скорости точки, когда она находится на оси Oy.
СМОТРЕТЬ РЕШЕНИЕ

11.4 Кривошип OA вращается с постоянной угловой скоростью ω. Найти скорость середины M шатуна кривошипноползунного механизма и скорость ползуна B в зависимости от времени, если OA=AB=a (см. рисунок к задаче 10.12).
СМОТРЕТЬ РЕШЕНИЕ

11.5 Движение точки задано уравнениями x = v0t cos α0, y = v0t sin α0 - gt2/2, причем ось Ox горизонтальна, ось Oy направлена по вертикали вверх, v0, g и α0 < π/2 — величины постоянные. Найти: 1) траекторию точки, 2) координаты наивысшего ее положения, 3) проекции скорости на координатные оси в тот момент, когда точка находится на оси Ox.
СМОТРЕТЬ РЕШЕНИЕ

11.6 Движение точки задано теми же уравнениями, что и в предыдущей задаче, причем v0=20 м/с, α0=60°, g=9,81 м/с2. Найти, с какой скоростью v1 должна выйти из начала координат в момент t=0 вторая точка для того, чтобы, двигаясь равномерно по оси Ox, она встретилась с первой точкой, и определить расстояние x1 до места встречи.
СМОТРЕТЬ РЕШЕНИЕ

11.7 Определить высоты h1, h2 и h3 над поверхностью воды трех пунктов отвесного берега, если известно, что три пули, выпущенные одновременно в этих пунктах с горизонтальными скоростями 50, 75 и 100 м/с, одновременно упали в воду, причем расстояние точки падения первой пули от берега равно 100 м; принять во внимание только ускорение силы тяжести g=9,81 м/с2. Определить также продолжительность T полета пуль и их скорости v1, v2 и v3 в момент падения в воду.
СМОТРЕТЬ РЕШЕНИЕ

11.8 Из орудия, ось которого образует угол 30° с горизонтом, выпущен снаряд со скоростью 500 м/с. Предполагая, что снаряд имеет только ускорение силы тяжести g=9,81 м/с2, найти годограф скорости снаряда и скорость точки, вычерчивающей годограф.
СМОТРЕТЬ РЕШЕНИЕ

11.9 Определить уравнения движения и траекторию точки колеса электровоза радиуса R=1 м, лежащей на расстоянии a=0,5 м от оси, если колесо катится без скольжения по горизонтальному прямолинейному участку пути; скорость оси колеса v=10 м/с. Ось Ox совпадает с рельсом, ось Oy — с радиусом точки при ее начальном низшем положении. Определить также скорость этой точки в те моменты времени, когда диаметр колеса, на котором она расположена, займет горизонтальное и вертикальное положения.
СМОТРЕТЬ РЕШЕНИЕ

11.10 Скорость электровоза v0=72 км/ч; радиус колеса его R=1 м; колесо катится по прямолинейному рельсу без скольжения. 1) Определить величину и направление скорости v точки M на ободе колеса в тот момент, когда радиус точки M составляет с направлением скорости v0 угол π/2+α. 2) Построить годограф скорости точки M и определить скорость v1 точки, вычерчивающей годограф.
СМОТРЕТЬ РЕШЕНИЕ

11.11 Определить уравнения движения и траекторию точки M колеса вагона радиуса R=0,5 м, отстоящей от оси на расстоянии a=0,6 м и лежащей в начальный момент на 0,1 м ниже рельса, если вагон движется по прямолинейному пути со скоростью v=10 м/с. Найти также моменты времени, когда эта точка будет проходить свое нижнее и верхнее положения, и проекции ее скорости на оси Ox, Oy в эти моменты времени. Ось Ox совпадает с рельсом, ось Oy проходит через начальное нижнее положение точки.
СМОТРЕТЬ РЕШЕНИЕ

11.12 Точка участвует одновременно в двух взаимно перпендикулярных затухающих колебаниях согласно уравнениям x = Ae-ht cos (kt + ε), y = Ae-ht sin (kt + ε). Определить проекции скорости точки на оси декартовых и полярных координат и найти модуль скорости точки.
СМОТРЕТЬ РЕШЕНИЕ

11.13 Какую кривую опишет корабль, идущий под постоянным курсовым углом α к географическому меридиану? Корабль принять за точку, движущуюся по поверхности земного шара. Указание. Воспользоваться сферическими координатами r, λ и φ.
СМОТРЕТЬ РЕШЕНИЕ

11.14 Уравнения движения точки M в цилиндрической системе координат имеют вид (см. задачу 10.8) r = a, φ = kt, z = vt. Найти проекции скорости точки M на оси цилиндрической системы координат, уравнения движения точки M1, описывающей годограф скорости, и проекции скорости точки M1.
СМОТРЕТЬ РЕШЕНИЕ

11.15 Точка M движется по окружности согласно уравнениям r = 2a cos (kt/2), φ = kt/2 (r, φ — полярные координаты). Найти проекции скорости точки M на оси полярной системы координат, уравнения движения точки M1, описывающей годограф скорости, и проекции скорости точки M1.
СМОТРЕТЬ РЕШЕНИЕ

11.16 Точка движется по линии пересечения сферы и цилиндра согласно уравнениям r = R, φ = kt/2, θ = kt/2 (r, φ, θ — сферические координаты; см. задачу 10.21). Найти модуль и проекции скорости точки на оси сферической системы координат.
СМОТРЕТЬ РЕШЕНИЕ

11.17 Найти в полярных координатах (r, φ) уравнение кривой, которую опишет корабль, сохраняющий постоянный угол пеленга α на неподвижную точку (угол между направлением скорости и направлением на точку), если дано: α и rφ=0=r0. Корабль принять за точку, движущуюся на плоскости, и за полюс взять произвольную неподвижную точку в этой плоскости. Исследовать частные случаи α=0, π/2 и π.
СМОТРЕТЬ РЕШЕНИЕ
Ускорение точки
12.1 Поезд движется со скоростью 72 км/ч; при торможении он получает замедление, равное 0,4 м/с2. Найти, за какое время до прихода поезда на станцию и на каком от нее расстоянии должно быть начато торможение.
СМОТРЕТЬ РЕШЕНИЕ

12.2 Копровая баба, ударив сваю, движется затем вместе с ней в течение 0,02 с до остановки, причем свая углубляется в землю на 6 см. Определить начальную скорость движения сваи, считая его равнозамедленным.
СМОТРЕТЬ РЕШЕНИЕ

12.3 Водяные капли вытекают из отверстия вертикальной трубочки через 0,1 с одна после другой и падают с ускорением 9,81 м/с2. Определить расстояние между первой и второй каплями через 1 с после момента истечения первой капли.
СМОТРЕТЬ РЕШЕНИЕ

12.4 Считая посадочную скорость самолета равной 400 км/ч, определить замедление его при посадке на пути l=1200 м, считая, что замедление постоянно.
СМОТРЕТЬ РЕШЕНИЕ

12.5 Копровая баба падает с высоты 2,5 м, а для ее поднятия на ту же высоту требуется втрое больше времени, чем на падение. Сколько ударов она делает в минуту, если считать, что свободное падение копровой бабы совершается с ускорением 9,81 м/с2?
СМОТРЕТЬ РЕШЕНИЕ

12.6 Ползун движется по прямолинейной направляющей с ускорением wx=-π2 sin π/2 t м/с2. Найти уравнение движения ползуна, если его начальная скорость v0x=2π м/с, а начальное положение совпадает со средним положением ползуна, принятым за начало координат. Построить кривые расстояний, скоростей и ускорений.
СМОТРЕТЬ РЕШЕНИЕ

12.7 Поезд, имея начальную скорость 54 км/ч, прошел 600 м в первые 30 c. Считая движение поезда равнопеременным, определить скорость и ускорение поезда в конце 30-й секунды, если рассматриваемое движение поезда происходит на закруглении радиуса R=1 км.
СМОТРЕТЬ РЕШЕНИЕ

12.8 При отходе от станции скорость поезда возрастает равномерно и достигает величины 72 км/ч через 3 мин после отхода; путь расположен на закруглении радиуса 800 м. Определить касательное, нормальное и полное ускорения поезда через 2 мин после момента отхода от станции.
СМОТРЕТЬ РЕШЕНИЕ

12.9 Поезд движется равнозамедленно по дуге окружности радиуса R=800 м и проходит путь s=800 м, имея начальную скорость v0=54 км/ч и конечную v=18 км/ч. Определить полное ускорение поезда в начале и в конце дуги, а также время движения по этой дуге.
СМОТРЕТЬ РЕШЕНИЕ

12.10 Закругление трамвайного пути состоит из двух дуг радиусом ρ1=300 м и ρ2=400 м. Центральные углы α1=α2=60°. Построить график нормального ускорения вагона, идущего по закруглению со скоростью v=36 км/ч.
СМОТРЕТЬ РЕШЕНИЕ

12.11 Точка движется по дуге окружности радиуса R=20 см. Закон ее движения по траектории: s=20 sin πt (t — в секундах, s — в сантиметрах). Найти величину и направление скорости, касательное, нормальное и полное ускорения точки в момент t=5 c. Построить также графики скорости, касательного и нормального ускорений.
СМОТРЕТЬ РЕШЕНИЕ

12.12 Прямолинейное движение точки происходит по закону s=g(at+e-at)/a2, где a и g — постоянные величины. Найти начальную скорость точки, а также определить ее ускорение в функции от скорости.
СМОТРЕТЬ РЕШЕНИЕ

12.13 Движение точки задано уравнениями x = 10 cos (2πt/5), y = 10 sin (2πt/5) (x, y — в сантиметрах, t — в секундах). Найти траекторию точки, величину и направление скорости, а также величину и направление ускорения.
СМОТРЕТЬ РЕШЕНИЕ

12.14 Уравнения движения пальца кривошипа дизеля в период пуска имеют вид x=75 cos 4t2, y=75 sin 4t2 (x, y — в сантиметрах, t — в секундах). Найти скорость, касательное и нормальное ускорения пальца.
СМОТРЕТЬ РЕШЕНИЕ

12.15 Движение точки задано уравнениями x = a(ekt + e-kt), y = a(ekt - e-kt), где a и k — заданные постоянные величины. Найти уравнение траектории, скорость и ускорение точки как функции радиус-вектора r=sqrt(x2+y2).
СМОТРЕТЬ РЕШЕНИЕ

12.16 Найти радиус кривизны при x=y=0 траектории точки, описывающей фигуру Лиссажу согласно уравнениям x = -a sin 2ωt, y = -a sin ωt.
СМОТРЕТЬ РЕШЕНИЕ

12.17 Найти величину и направление ускорения, а также радиус кривизны траектории точки колеса, катящегося без скольжения по горизонтальной оси Ox, если точка описывает циклоиду согласно уравнениям x = 20t - sin 20t, y = 1 - cos 20t (t — в секундах, x, y — в метрах). Определить также значение радиуса кривизны ρ при t=0.
СМОТРЕТЬ РЕШЕНИЕ

12.18 Найти траекторию точки M шатуна кривошипно-ползунного механизма, если r=l=60 см, MB=l/3, φ=4πt (t — в секундах), а также определить скорость, ускорение и радиус кривизны траектории точки в момент, когда φ=0.
СМОТРЕТЬ РЕШЕНИЕ

12.19 На проволочной окружности радиуса 10 см надето колечко M; через него проходит стержень OA, который равномерно вращается вокруг точки O, лежащей на той же окружности; угловая скорость стержня такова, что он поворачивается на прямой угол за 5 c. Определить скорость v и ускорение w колечка.
СМОТРЕТЬ РЕШЕНИЕ

12.20 В условиях предыдущей задачи определить скорость и ускорение колечка M как функцию угла φ, если угловое ускорение стержня OM равно k cos φ (k=const). В начальный момент при t=0 угол φ и его скорость равнялись нулю, радиус окружности r, 0 ≤ φ ≤ π.
СМОТРЕТЬ РЕШЕНИЕ

12.21 Движение снаряда задано уравнениями x = v0t cos α0, y = v0t sin α0 - gt2/2, где v0 и α0 — постоянные величины. Найти радиус кривизны траектории при t=0 и в момент падения на землю.
СМОТРЕТЬ РЕШЕНИЕ

12.22 Снаряд движется в вертикальной плоскости согласно уравнениям x=300t, y=400t-5t2 (t — в секундах, x, y — в метрах). Найти: 1) скорость и ускорение в начальный момент, 2) высоту и дальность обстрела, 3) радиус кривизны траектории в начальной и в наивысшей точках.
СМОТРЕТЬ РЕШЕНИЕ

12.23 Из орудия береговой артиллерии с высоты h=30 м над уровнем моря произведен выстрел под углом α0=45° к горизонту с начальной скоростью снаряда v0=1000 м/с. Определить, на каком расстоянии от орудия снаряд попадет в цель, находящуюся на уровне моря. Сопротивлением воздуха пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

12.24 Найти касательное и нормальное ускорения точки, движение которой выражается уравнениями x = αt, y = βt - gt2/2.
СМОТРЕТЬ РЕШЕНИЕ

12.25 Точка движется по винтовой линии согласно уравнениям x=2 cos 4t, y=2 sin 4t, z=2t, причем за единицу длины взят метр. Определить радиус кривизны ρ траектории.
СМОТРЕТЬ РЕШЕНИЕ

12.26 Движение точки задано в полярных координатах уравнениями r=aekt и φ=kt, где a и k — заданные постоянные величины. Найти уравнение траектории, скорость, ускорение и радиус кривизны траектории точки как функции ее радиус-вектора r.
СМОТРЕТЬ РЕШЕНИЕ

12.27 Движение точки задано уравнениями x = 2t, y = t2 (t — в секундах, x и y — в сантиметрах). Определить величины и направления скорости и ускорения точки в момент времени t=1 c.
СМОТРЕТЬ РЕШЕНИЕ

12.28 Построить траекторию движения точки, годограф скорости и определить радиус кривизны траектории в начальный момент, если точка движется согласно уравнениям x = 4t, y = t3 (t — в секундах, x и y — в сантиметрах).
СМОТРЕТЬ РЕШЕНИЕ

12.29 Кривошип O1C длиной a/2 вращается с постоянной угловой скоростью ω вокруг оси O1. В точке С с кривошипом шарнирно связана линейка AB, проходящая все время через качающуюся муфту O, находящуюся на расстоянии a/2 от оси вращения O1. Приняв точку O за полюс, найти в полярных координатах уравнения движения точки M линейки, отстоящей от шарнира C на расстоянии a, ее траекторию, скорость и ускорение (в начальный момент угол φ=∠COO1=0).
СМОТРЕТЬ РЕШЕНИЕ

12.30 В условиях задачи 12.29 определить радиус кривизны кардиоиды при r=2a, φ=0.
СМОТРЕТЬ РЕШЕНИЕ

12.31 Конец A стержня AB перемещается по прямолинейной направляющей CD с постоянной скоростью vA. Стержень AB все время проходит через качающуюся муфту O, отстоящую от направляющей CD на расстоянии a. Приняв точку O за полюс, найти в полярных координатах r, φ скорость и ускорение точки M, находящейся на линейке на расстоянии b от ползуна A.
СМОТРЕТЬ РЕШЕНИЕ

12.32 Точка M движется по винтовой линии. Уравнения движения ее в цилиндрической системе координат имеют вид r = a, φ = kt, z = νt. Найти проекции ускорения точки на оси цилиндрической системы координат, касательную и нормальную составляющие ускорения и радиус кривизны винтовой линии.
СМОТРЕТЬ РЕШЕНИЕ

12.33 Точка M движется по линии пересечения сферы x2+y2+z2=R2 и цилиндра (x-R/2)2+y2=R2/4. Уравнения движения точки в сферических координатах имеют вид (см. задачу 10.21) r = R, φ = kt/2, θ = kt/2. Найти проекции и модуль ускорения точки в сферических координатах.
СМОТРЕТЬ РЕШЕНИЕ

12.34 Корабль движется под постоянным курсовым углом α к географическому меридиану, описывая при этом локсодромию (см. задачу 11.13). Считая, что модуль скорости v корабля не изменяется, определить проекции ускорения корабля на оси сферических координат r, λ и φ (λ — долгота, φ — широта места плавания), модуль ускорения и радиус кривизны локсодромии.
СМОТРЕТЬ РЕШЕНИЕ

12.35 Выразить декартовы координаты точки через тороидальные координаты r=CM, ψ и φ и определить коэффициенты Ляме (Ламе).
СМОТРЕТЬ РЕШЕНИЕ

12.36 Движение точки задано в тороидальной системе координат r, ψ и φ. Найти проекции скорости и ускорения точки на оси этой системы отсчета.
СМОТРЕТЬ РЕШЕНИЕ

12.37 Точка движется по винтовой линии, намотанной на тор, по закону r = R = const, ψ = ωt, φ = kt. Определить проекции скорости и ускорения точки в тороидальной системе координат (ω=const, k=const).
СМОТРЕТЬ РЕШЕНИЕ

12.38 Механизм робота-манипулятора состоит из поворотного устройства 1, колонны для вертикального перемещения 2 и выдвигающейся руки со схватом 3. Найти скорость и ускорение центра схвата при заданных φ(t), z(t), r(t).
СМОТРЕТЬ РЕШЕНИЕ

12.39 Вертикальная колонна, несущая руку робота-манипулятора, может поворачиваться на угол φ. Рука со схватом поворачивается на угол ϑ и выдвигается на расстояние r. Найти скорость и ускорение центра схвата.
СМОТРЕТЬ РЕШЕНИЕ

12.40 Механизм робота-манипулятора состоит из поворотного устройства с вертикальной осью (угол поворота — φ) и двух звеньев, расположенных в вертикальной плоскости (углы поворота звеньев — ϑ1 и ϑ2). Найти скорость центра схвата при переносе груза.
СМОТРЕТЬ РЕШЕНИЕ
Вращение твердого тела вокруг неподвижной оси
13.1 Определить угловую скорость: 1) секундной стрелки часов, 2) минутной стрелки часов, 3) часовой стрелки часов, 4) вращения Земли вокруг своей оси, считая, что Земля делает один оборот за 24 часа, 5) паровой турбины Лаваля, делающей 15000 об/мин.
СМОТРЕТЬ РЕШЕНИЕ

13.2 Написать уравнение вращения диска паровой турбины при пуске в ход, если известно, что угол поворота пропорционален кубу времени и при t=3 с угловая скорость диска равна ω=27π рад/с.
СМОТРЕТЬ РЕШЕНИЕ

13.3 Маятник центробежного регулятора, вращающийся вокруг вертикальной оси AB, делает 120 об/мин. В начальный момент угол поворота был равен π/6 рад. Найти угол поворота и угловое перемещение маятника за время t=1/2 c.
СМОТРЕТЬ РЕШЕНИЕ

13.4 Тело, начиная вращаться равноускоренно из состояния покоя, делает 3600 оборотов в первые 2 минуты. Определить угловое ускорение.
СМОТРЕТЬ РЕШЕНИЕ

13.5 Вал начинает вращаться равноускоренно из состояния покоя; в первые 5 с он совершает 12,5 оборота. Какова его угловая скорость по истечении этих 5 с?
СМОТРЕТЬ РЕШЕНИЕ

13.6 Маховое колесо начинает вращаться из состояния покоя равноускоренно; через 10 мин после начала движения оно имеет угловую скорость, равную 4π рад/с. Сколько оборотов сделало колесо за эти 10 мин?
СМОТРЕТЬ РЕШЕНИЕ

13.7 Колесо, имеющее неподвижную ось, получило начальную угловую скорость 2π рад/с; сделав 10 оборотов, оно вследствие трения в подшипниках остановилось. Определить угловое ускорение ε колеса, считая его постоянным.
СМОТРЕТЬ РЕШЕНИЕ

13.8 С момента выключения мотора пропеллер самолета, вращавшийся с угловой скоростью, равной 40π рад/с, сделал до остановки 80 оборотов. Сколько времени прошло с момента выключения мотора до остановки, если считать вращение пропеллера равнозамедленным?
СМОТРЕТЬ РЕШЕНИЕ

13.9 Тело совершает колебания около неподвижной оси, причем угол поворота выражается уравнением φ = 20° sin ψ, где угол ψ выражен в угловых градусах зависимостью ψ=(2t)°, причем t обозначает секунды. Определить угловую скорость тела в момент t=0, ближайшие моменты t1 и t2, в которые изменяется направление вращения, и период колебания T.
СМОТРЕТЬ РЕШЕНИЕ

13.10 Часовой балансир совершает крутильные гармонические колебания с периодом T=1/2 c. Наибольший угол отклонения точки обода балансира от положения равновесия α=π/2 рад. Найти угловую скорость и угловое ускорение баланса через 2 с после момента, когда балансир проходит положение равновесия.
СМОТРЕТЬ РЕШЕНИЕ

13.11 Маятник колеблется в вертикальной плоскости около неподвижной горизонтальной оси O. Выйдя в начальный момент из положения равновесия, он достигает наибольшего отклонения α=π/16 рад через 2/3 c. 1) Написать закон колебаний маятника, считая, что он совершает гармонические колебания. 2) В каком положении маятник будет иметь наибольшую угловую скорость и чему она равна?
СМОТРЕТЬ РЕШЕНИЕ

13.12 Определить скорость v и ускорение w точки, находящейся на поверхности Земли в Ленинграде, принимая во внимание только вращение Земли вокруг своей оси; широта Ленинграда 60°, радиус Земли 6370 км.
СМОТРЕТЬ РЕШЕНИЕ

13.13 Маховое колесо радиуса 0,5 м вращается равномерно вокруг своей оси; скорость точек, лежащих на его ободе, равна 2 м/с. Сколько оборотов в минуту делает колесо?
СМОТРЕТЬ РЕШЕНИЕ

13.14 Точка A шкива, лежащая на его ободе, движется со скоростью 50 см/с, а некоторая точка B, взятая на одном радиусе с точкой A, движется со скоростью 10 см/с; расстояние AB=20 см. Определить угловую скорость ω и диаметр шкива.
СМОТРЕТЬ РЕШЕНИЕ

13.15 Маховое колесо радиуса R=2 м вращается равноускоренно из состояния покоя; через t=10 с точки, лежащие на ободе, обладают линейной скоростью v=100 м/с. Найти скорость, нормальное и касательное ускорения точек обода колеса для момента t=15 c.
СМОТРЕТЬ РЕШЕНИЕ

13.16 Найти горизонтальную скорость v, которую нужно сообщить телу, находящемуся на экваторе, для того чтобы оно, двигаясь равномерно вокруг Земли по экватору в особых направляющих, имело ускорение свободного падения. Определить также время T, по истечении которого тело вернется в первоначальное положение. Радиус Земли R=637*106 см, а ускорение силы тяжести на экваторе g=978 см/с2.
СМОТРЕТЬ РЕШЕНИЕ

13.17 Угол наклона полного ускорения точки обода махового колеса к радиусу равен 60°. Касательное ускорение ее в данный момент wτ=10*√3 м/с2. Найти нормальное ускорение точки, отстоящей от оси вращения на расстоянии r=0,5 м. Радиус махового колеса R=1 м.
СМОТРЕТЬ РЕШЕНИЕ

13.18 Вал радиуса R=10 см приводится во вращение гирей P, привешенной к нему на нити. Движение гири выражается уравнением x=100t2, где x — расстояние гири от места схода нити с поверхности вала, выраженное в сантиметрах, t — время в секундах. Определить угловую скорость ω и угловое ускорение ε вала, а также полное ускорение w точки на поверхности вала в момент t.
СМОТРЕТЬ РЕШЕНИЕ

13.19 Решить предыдущую задачу в общем виде, выразив ускорение точек обода колеса через пройденное гирей расстояние x, радиус колеса R и ускорение гири x =w0=const.
СМОТРЕТЬ РЕШЕНИЕ

13.20 Стрелка гальванометра длины 3 см колеблется вокруг неподвижной оси по закону φ=φ0 sin kt. Определить ускорение конца стрелки в ее среднем и крайних положениях, а также моменты времени, при которых угловая скорость ω и угловое ускорение ε обращаются в нуль, если период колебаний равен 0,4 c, а угловая амплитуда φ0=π/30.
СМОТРЕТЬ РЕШЕНИЕ
Преобразование простейших движений твердого тела
14.1 Угловая скорость зубчатого колеса I диаметра D1=360 мм равна 10π/3 рад/с. Чему должен равняться диаметр зубчатого колеса II, находящегося с колесом I во внутреннем зацеплении, угловая скорость которого в три раза больше угловой скорости колеса I?
СМОТРЕТЬ РЕШЕНИЕ

14.2 Редуктор скорости, служащий для замедления вращения и передающий вращение вала I валу II, состоит из четырех шестерен с соответствующим числом зубцов: z1=10, z2=60, z3=12, z4=70. Определить передаточное отношение механизма.
СМОТРЕТЬ РЕШЕНИЕ

14.3 Станок со шкивом A приводится в движение из состояния покоя бесконечным ремнем от шкива B электромотора; радиусы шкивов: r1=75 см, r2=30 см; после пуска в ход электромотора его угловое ускорение равно 0,4π рад/с2. Пренебрегая скольжением ремня по шкивам, определить через сколько времени угловая скорость станка будет равна 10π рад/с.
СМОТРЕТЬ РЕШЕНИЕ

14.4 В механизме стрелочного индикатора движение от рейки мерительного штифта 1 передается шестерне 2, на оси которой укреплено зубчатое колесо 3, сцепляющееся с шестерней 4, несущей стрелку. Определить угловую скорость стрелки, если движение штифта задано уравнением x=a sin kt и радиусы зубчатых колес соответственно равны r2, r3 и r4.
СМОТРЕТЬ РЕШЕНИЕ

14.5 В механизме домкрата при вращении рукоятки A начинают вращаться шестерни 1, 2, 3, 4 и 5, которые приводят в движение зубчатую рейку B домкрата. Определить скорость последней, если рукоятка A вращается с угловой скоростью, равной π рад/с. Числа зубцов шестерен: z1=6, z2=24, z3=8, z4=32; радиус пятой шестерни r5=4 см.
СМОТРЕТЬ РЕШЕНИЕ

14.6 Для получения периодически изменяющихся угловых скоростей сцеплены два одинаковых эллиптических зубчатых колеса, из которых одно вращается равномерно вокруг оси O с угловой скоростью ω=9π рад/с, а другое приводится первым во вращательное движение вокруг оси O1. Оси O и O1 параллельны и проходят через фокусы эллипсов. Расстояние OO1 равно 50 см, полуоси эллипсов 25 и 15 см. Определить наименьшую и наибольшую угловые скорости колеса O1.
СМОТРЕТЬ РЕШЕНИЕ

14.7 Вывести закон передачи вращения пары эллиптических зубчатых колес с полуосями a и b. Угловая скорость колеса I ω1=const. Расстояние между осями O1O2=2a, φ — угол, образованный прямой, соединяющей оси вращения, и большой осью эллиптического колеса I. Оси проходят через фокусы эллипсов.
СМОТРЕТЬ РЕШЕНИЕ

14.8 Найти наибольшую и наименьшую угловые скорости овального колеса O2, сцепленного с колесом O1, угловая скорость которого равна 8π рад/с. Оси вращения колес находятся в центрах овалов. Расстояние между осями равно 50 см. Полуоси овалов равны 40 и 10 см.
СМОТРЕТЬ РЕШЕНИЕ

14.9 Определить, через какой промежуток времени зубчатое коническое колесо O1 радиуса r1=10 см будет иметь угловую скорость, равную 144π рад/с, если оно приводится во вращение из состояния покоя таким же колесом O2 радиуса r2=15 см, вращающимся равноускоренно с угловым ускорением 4π рад/с2.
СМОТРЕТЬ РЕШЕНИЕ

14.10 Ведущий вал I фрикционной передачи вращается с угловой скоростью ω=20π рад/с и на ходу передвигается (направление указано стрелкой) так, что расстояние d меняется по закону d=(10-0,5t) см (t — в секундах). Определить: 1) угловое ускорение вала II как функцию расстояния d; 2) ускорение точки на ободе колеса B в момент, когда d=r, даны радиусы фрикционных колес: r=5 см, R=15 см.
СМОТРЕТЬ РЕШЕНИЕ

14.11 Найти закон движения, скорость и ускорение ползуна B кривошипно-ползунного механизма OAB, если длины шатуна и кривошипа одинаковы: AB=OA=r, а вращение кривошипа OA вокруг вала O равномерно: ω=ω0. Ось x направлена по направляющей ползуна. Начало отсчета расстояний — в центре O кривошипа.
СМОТРЕТЬ РЕШЕНИЕ

14.12 Определить закон движения, скорость и ускорение ползуна B кривошипно-ползунного механизма, если кривошип OA вращается с постоянной угловой скоростью ω0. Длина кривошипа OA=r, длина шатуна AB=l. Ось Ox направлена по направляющей ползуна. Начало отсчета — в центре O кривошипа. Отношение r/l=λ следует считать весьма малым (λ<<1); α=ω0t.
СМОТРЕТЬ РЕШЕНИЕ

14.13 Найти закон движения стержня, если диаметр эксцентрика d=2r, а ось вращения O находится от оси диска C на расстоянии OC=a, ось Ox направлена по стержню, начало отсчета — на оси вращения, a/r=λ.
СМОТРЕТЬ РЕШЕНИЕ

14.14 Написать уравнение движения поршня нецентрального кривошипно-ползунного механизма. Расстояние от оси вращения кривошипа до направляющей линейки h, длина кривошипа r, длина шатуна l; ось Cx направлена по направляющей ползуна. Начало отсчета расстояний — в крайнем правом положении ползуна; l/r=λ, h/r=k, φ=ω0t.
СМОТРЕТЬ РЕШЕНИЕ

14.15 Кулак, равномерно вращаясь вокруг оси O, создает равномерное возвратно-поступательное движение стержня AB. Время одного полного оборота кулака 8 c, уравнения движения стержня в течение этого времени имеют вид (x — в сантиметрах, t — в секундах) x = 30 + 5t, 0 ≤ t ≤ 4, x = 70 - 5t, 4 ≤ t ≤ 8. Определить уравнения контура кулака и построить график движения стержня.
СМОТРЕТЬ РЕШЕНИЕ

14.16 Найти закон движения и построить график возвратно-поступательного движения стержня AB, если задано уравнение профиля кулака r = (20 + 15φ/π) см, 0 < φ < 2π. Кулак равномерно вращается с угловой скоростью, равной 2π/3 рад/с.
СМОТРЕТЬ РЕШЕНИЕ

14.17 Написать уравнение контура кулака, у которого полный ход стержня h=20 см соответствовал бы одной трети оборота, причем перемещения стержня должны быть в это время пропорциональны углу поворота. В течение следующей трети оборота стержень должен оставаться неподвижным, и, наконец, на протяжении последней трети он должен совершать обратный ход при тех же условиях, что и на первой трети. Наименьшее расстояние конца стержня от центра кулака равно 70 см.
СМОТРЕТЬ РЕШЕНИЕ

14.18 Найти, на какую длину опускается стержень, опирающийся своим концом о круговой контур радиуса r=30 см кулака, движущегося возвратно-поступательно со скоростью v=5 см/с. Время опускания стержня t=3 c. В начальный момент стержень находится в наивысшем положении.
СМОТРЕТЬ РЕШЕНИЕ

14.19 Найти ускорение кругового поступательного движущегося кулака, если при его равноускоренном движении без начальной скорости стержень опустился за 4 с из наивысшего положения на h=4 см. Радиус кругового контура кулака r=10 см. (См. рисунок к задаче 14.18.)
СМОТРЕТЬ РЕШЕНИЕ